CFD Online Logo CFD Online URL
Home > Forums > CFX

about my old post

Register Blogs Members List Search Today's Posts Mark Forums Read

LinkBack Thread Tools Display Modes
Old   February 8, 2008, 20:09
Default about my old post
Rogerio Fernandes Brito
Posts: n/a
Brazil, January, 25th, 2008.

Subject: CAE program for heat conducting

Which is the better CAE program to simulate the heat conducting in a block? I tried using FEMLAB 3.0a ( from COMSOL, but the results had a big deviation! It happened with the CFX-v5.6 program too. The softwares are listed below:

FLUENT, ABAQUS v6.7, ANSYS CFX-v11.0, Flow3D or some another one. Thanks!

Details: I wanna simulate a sample (=cemented carbide tool) like that:

Total dimension of the sample (x, y, z): 0.0127 x 0.0127 x 0.0047 (m) = 1.27 x 1.27 x 0.47 (cm) = 12.7 x 12.7 x 4.7 (mm)

Dimension of the cavity with air (Pr = 0.70) (x, y, z) (for example, 10 times the dimension of the sample): 127.0 x 127.0 x 47.0 (mm)

Interval of acquisition of data = 0.22 seconds

Initial temperature of the sample and the air too= 29.2 (C) = 302.35 K

Number of thermocouples = 4

Co-ordinated (s) of the (s) thermocouple (you are):

x= 0.0095 (m) y= 0.0035 (m) z= 0.0047 (m) x = 9.5 (mm) y= 3.5 (mm) z= 4.7 (mm)

x= 0.0043 (m) y= 0.0035 (m) z= 0.0047 (m) x = 4.3 (mm) y= 3.5 (mm) z= 4.7 (mm)

x= 0.0035 (m) y= 0.0089 (m) z= 0.0047 (m) x = 3.5 (mm) y= 8.9 (mm) z= 4.7 (mm)

x= 0.0065 (m) y= 0.0059 (m) z= 0.0047 (m) x = 6.5 (mm) y= 5.9 (mm) z= 4.7 (mm)

Area (s) (s) for the (s) heat flow (s) (the heat flux [W m^-2] is in the center of the square for the coordinate z=0.0 ):

xo= 0 x=0.0104

yo= 0 y=0.0104

zo= 0.0 z=0.0

About the sample: The values of thermal properties used to calculate these temperatures are 43.1 W/m.K and 14.8 x 10^-06


As boundary conditions, it was considered that all the faces were submitted to a constant convection heat transfer

coefficient (h = 20 W/mK and Tinf=302.35 K)

About the results, using CFX-v5.6: Im making a comparison with experimental data and it had a big deviation, around 30%.

More details about the results obtained with CFX-v5.6: Im using CFX-v5.6 and making a comparison with experimental data and also with a numerical data (method elemnt method) from Solidonio* reseacher (*from Federal University of Uberlandia, in Brazil - Solidonio has been used this kind of boundary condition (h=20 and T=302.35 [K]). In my study, i had to put the sample (metal) within a bigger cavity with air (laminar flow) with isothermal wall at T = 302.35 [K]. Solidonio did a simulation using only the sample, only a heat conducting simulation. On the sample, im using MC1 = 0.8 and this sample has 12.7 x 12.7 x 4.7 [mm]. Maybe, i would improve the mesh, but i dont have a good PC, onlye a AMD Athon with 512 MB of memory RAM. Its good to remember that my Biot number on this sample is much lower than 0.1, so my results show that, in all the sample, i have the same temperatura, around 338 [K] for t = 48 [s] and the experimental data gives around T = 49 + 273.15 [K]. A big deviation.

I said: "...Its good to remember that my Biot number on this sample is much lower than 0.1, so my results show that, in all the sample, i have the same temperature...". I mean that i dont know if the results will get better, if i make another mesh wit more elements on the sample. On the fluid (air), im using a coarse mesh! I dont want to study the flow around the sample. On CFX-v5.6, i cant make only a heat conducting simulation in a unique solid. I must make two solids, one is the fluid (air at 25 C) e another is the solid.

The method used by Solidonio* is the Finite Element Method (FEM), its not a commercial software. He* had developed this 3D software. The sample has the following thermal parameters. Density "ro": 14,900.0 [kg/m]; Specific Heat Capacity Cp: 195.85 [J/(kg K)]; Thermal Conductivity K: 43.1 [W/(m K)]; Thermal Diffusivity Coefficient "alfa": 14.8E-06 [m/s].

The deviation is around 30% when im comparing with experimental data! I dont know whats happening! The sample {12.7 x 12.7 x 4.7 [mm]} is too smal with a small Biot number (much lower than 0.1). So, the gradient of the temperature is the same through the sample in a z direction. When I improve the mesh (with small volumes), there is no advance on the results! I put 0.38 as MC1 on sample mesh and 20.0 (MC2) on the cavity walls (mesh). Next week, Ill change the g (9.81 [m s^-2] direction. Today, Im simulating with K = 100 and not with K = 43.1 (thermal conductivity). Im making a simulation on CFX-v5.6. Ill use ANSYS CFX-11.0 to see if I will have a different results.

Thanks for your contribution!

  Reply With Quote

Old   February 8, 2008, 20:19
Default Re: about my old post
Rogerio Fernandes Brito
Posts: n/a
For meshes using MC1=0.6 / MEL = 2.0 and MC1=0.5 / MEL = 4.0, the results had a small deviation, less than 10% for time t = 70s (from time t=0s up to 110s). With other MC1, the deviations are big with 30% of error, when im comparing with experimental data. In this case, i used MC1, on the solid, equal 0.2; 0,4; and 0.8. Whats the problem on my simulation? Im using tetra mesh and CFX-v5.6. Does the hexa mesh has a better result?

MC1= mesh control on sample with 12.7 x 12.7 x 4.7 mm. MEL= maximum edge length on the cavity (with air) with 32.7 x 32.7 x 24.7 mm.
  Reply With Quote


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Similar Threads
Thread Thread Starter Forum Replies Last Post
Ansys Post processing ano999 ANSYS 1 May 27, 2011 16:24
NO model vs post processing in coal combustion,CFX sakalido CFX 1 April 15, 2011 14:07
post processing for KIVA dirga Main CFD Forum 5 April 23, 2009 10:58
post data starcd_learner CD-adapco 0 February 1, 2006 12:24
Post Processing in FEM Abhijit Tilak Main CFD Forum 0 April 26, 2004 11:59

All times are GMT -4. The time now is 05:36.