CFD Online Discussion Forums

CFD Online Discussion Forums (http://www.cfd-online.com/Forums/)
-   CFX (http://www.cfd-online.com/Forums/cfx/)
-   -   error in two way fsi (http://www.cfd-online.com/Forums/cfx/87831-error-two-way-fsi.html)

kmgraju April 30, 2011 01:33

error in two way fsi
 
1 Attachment(s)
Dear all
I am doing two way fsi problem in the artery having stenosis please find the CCL for your reference.Kindly advice me where I did mistake

Thank you
Regards
Govind
.
LIBRARY:
CEL:
EXPRESSIONS:
pin = 130[mm Hg]*step((0.1[s]-t)/1[s])*sin(pi*t/0.1[s])
vout = 0.10[m s^-1]*(1-r^2/(0.0015[mm])^2)
END
END
MATERIAL: Blood
Material Group = User
Option = Pure Substance
Thermodynamic State = Liquid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 1060 [kg m^-3]
Molar Mass = 1.0 [kg kmol^-1]
Option = Value
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = 0.0032 [Pa s]
Option = Value
END
END
END
END
FLOW: Flow Analysis 1
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units = [s]
END
ANALYSIS TYPE:
Option = Transient
EXTERNAL SOLVER COUPLING:
ANSYS Input File = ds.dat
Option = ANSYS MultiField
COUPLING TIME CONTROL:
COUPLING INITIAL TIME:
Option = Automatic
END
COUPLING TIME DURATION:
Option = Total Time
Total Time = 5 [s]
END
COUPLING TIME STEPS:
Option = Timesteps
Timesteps = 0.1 [s]
END
END
END
INITIAL TIME:
Option = Coupling Initial Time
END
TIME DURATION:
Option = Coupling Time Duration
END
TIME STEPS:
Option = Coupling Timesteps
END
END
DOMAIN: Default Domain
Coord Frame = Coord 0
Domain Type = Fluid
Location = B29
BOUNDARY: Inlet
Boundary Type = OPENING
Location = inlet
BOUNDARY CONDITIONS:
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = pin
END
MESH MOTION:
Option = Unspecified
END
END
END
BOUNDARY: Interface
Boundary Type = WALL
Location = fsi
BOUNDARY CONDITIONS:
MASS AND MOMENTUM:
Option = No Slip Wall
END
MESH MOTION:
ANSYS Interface = FSIN_1
Option = ANSYS MultiField
Receive from ANSYS = Total Mesh Displacement
Send to ANSYS = Total Force
END
END
END
BOUNDARY: outlet
Boundary Type = OPENING
Location = outlet
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Cartesian Velocity Components
U = 0 [m s^-1]
V = 0 [m s^-1]
W = vout
END
MESH MOTION:
Option = Unspecified
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = Regions of Motion Specified
MESH MOTION MODEL:
Option = Displacement Diffusion
MESH STIFFNESS:
Option = Increase near Small Volumes
Stiffness Model Exponent = 10
END
END
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID DEFINITION: Fluid 1
Material = Blood
Option = Material Library
MORPHOLOGY:
Option = Continuous Fluid
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = None
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = Laminar
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
Velocity Type = Cartesian
CARTESIAN VELOCITY COMPONENTS:
Option = Automatic with Value
U = 0 [m s^-1]
V = 0 [m s^-1]
W = 0 [m s^-1]
END
STATIC PRESSURE:
Option = Automatic with Value
Relative Pressure = 0 [Pa]
END
END
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
Velocity Type = Cartesian
CARTESIAN VELOCITY COMPONENTS:
Option = Automatic with Value
U = 0 [m s^-1]
V = 0 [m s^-1]
W = 0 [m s^-1]
END
STATIC PRESSURE:
Option = Automatic with Value
Relative Pressure = 0 [Pa]
END
END
END
OUTPUT CONTROL:
MONITOR OBJECTS:
MONITOR BALANCES:
Option = Full
END
MONITOR FORCES:
Option = Full
END
MONITOR PARTICLES:
Option = Full
END
MONITOR POINT: Monitor Point 1
Cartesian Coordinates = 0.0[m],0.0[m],0.0[m]
Option = Cartesian Coordinates
Output Variables List = Pressure
END
MONITOR RESIDUALS:
Option = Full
END
MONITOR TOTALS:
Option = Full
END
END
RESULTS:
File Compression Level = Default
Option = Standard
END
TRANSIENT RESULTS: Transient Results 1
File Compression Level = Default
Include Mesh = No
Option = Selected Variables
Output Variables List = Pressure
OUTPUT FREQUENCY:
Option = Every Coupling Step
END
END
END
SOLVER CONTROL:
ADVECTION SCHEME:
Option = High Resolution
END
CONVERGENCE CONTROL:
Maximum Number of Coefficient Loops = 3
Minimum Number of Coefficient Loops = 1
Timescale Control = Coefficient Loops
END
CONVERGENCE CRITERIA:
Residual Target = 1.E-4
Residual Type = RMS
END
EXTERNAL SOLVER COUPLING CONTROL:
COUPLING DATA TRANSFER CONTROL:
Convergence Target = 1e-2
Under Relaxation Factor = 0.75
ANSYS VARIABLE: FORC
Under Relaxation Factor = 0.75
END
END
COUPLING STEP CONTROL:
Maximum Number of Coupling Iterations = 10
Minimum Number of Coupling Iterations = 1
SOLUTION SEQUENCE CONTROL:
Solve ANSYS Fields = After CFX Fields
END
END
END
TRANSIENT SCHEME:
Option = Second Order Backward Euler
TIMESTEP INITIALISATION:
Option = Automatic
END
END
END
END
COMMAND FILE:
Version = 13.0
Results Version = 13.0
END
SIMULATION CONTROL:
EXECUTION CONTROL:
EXECUTABLE SELECTION:
Double Precision = Off
END
INTERPOLATOR STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
END
MFX RUN CONTROL:
MFX RUN DEFINITION:
MFX Run Mode = Start ANSYS and CFX
Process ANSYS Input File = On
Restart ANSYS Run = Off
END
MFX SOLVER CONTROL:
ANSYS Installation Root = C:\Program Files\ANSYS Inc\v130\ansys
END
END
PARALLEL HOST LIBRARY:
HOST DEFINITION: govindaraju
Host Architecture String = winnt
Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX
END
END
PARTITIONER STEP CONTROL:
Multidomain Option = Independent Partitioning
Runtime Priority = Standard
EXECUTABLE SELECTION:
Use Large Problem Partitioner = Off
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARTITIONING TYPE:
MeTiS Type = k-way
Option = MeTiS
Partition Size Rule = Automatic
END
END
RUN DEFINITION:
Run Mode = Full
Solver Input File = Fluid Flow CFX.def
END
SOLVER STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARALLEL ENVIRONMENT:
Number of Processes = 1
Start Method = Serial
END
PROCESS COUPLING:
Process Name = CFX
Host Port = 2272
Host Name = GOVINDARAJU
END
END
END
END

Lance May 2, 2011 02:32

Your structural part has crashed. Post the structural output (ANSYS.stdout)


All times are GMT -4. The time now is 22:19.