
[Sponsors] 
March 22, 2013, 09:12 
Oscillating Residuals (with picture)

#1 
New Member
Pete Drum
Join Date: Sep 2012
Posts: 6
Rep Power: 4 
Hi guys,
iam doing a wind flow velocity analysis around a building as a project for college (>external flow). As I said in the title, i have an issue with oscillating residuals. I meshed the system with tets and generated 10 boundary layers around the building. Number of elements is about 1.8 *10^6. I made the enveloping body as big as described in the ANSYS tutorials. As Inlet andOutlet I used velocity inlet and pressure outlet. The turbulence model is a kepsilon with realizable and enhanced wall treatment. The wind velocity at the inlet is 8 m/s. furhtermore, I defined SIMPLE and everything alse as secondorder. Y+ is about 200. I didnt change any of the URF's. There are no mesh warnings, if I check the mesh in the solver. solver is pressurebased and I defined steady state. thats how it looks after 5000 iterations: Uploaded with ImageShack.us any ideas how to solve this problem? thank you! regards 

March 22, 2013, 10:26 

#2 
Senior Member
Alex
Join Date: Jun 2012
Location: Germany
Posts: 1,097
Rep Power: 19 
Some things you can try:


March 22, 2013, 10:35 

#3 
New Member
Pete Drum
Join Date: Sep 2012
Posts: 6
Rep Power: 4 
Hey flotus1, thanks for your answer.I will try that for sure.
But I have two questions about your suggestions: 1. Why would you deactivate the realizable option? I thought it generates more accurate results than the other options. 2. Could you explain how I can check the turbulence values at the inlet in a more detailed way? thank you : ) regards 

March 22, 2013, 10:44 

#4 
Senior Member
Alex
Join Date: Jun 2012
Location: Germany
Posts: 1,097
Rep Power: 19 
The realizable option may produce better approximations of the flow in some cases.
But if the solution doesnt converge with this option, then in my opinion the standard kepsilon formulation still is better. We experienced similar convergence problems for the external flow around blunt bodies with the realizable option. The komega SST model might also be an alternative worth trying. Since you get warnings about the turbulent viscosity ratio limited in many cells, you should make sure that you didnt set unreasonably high values at the inlet. Yet it is more probable that the warning comes from cells in the wake region of the building. 

March 22, 2013, 11:09 

#5 
Super Moderator

if you can provide us with some picture of your mesh ...


March 22, 2013, 11:37 

#6 
New Member
Pete Drum
Join Date: Sep 2012
Posts: 6
Rep Power: 4 
Thanks for your answers. I will upload some pictures of my mesh wehn Im at home.
regards 

March 25, 2013, 06:24 

#7 
New Member
Pete Drum
Join Date: Sep 2012
Posts: 6
Rep Power: 4 
Hi again,
I gave it another try with the recommended options (realizable off, reduced URFs (momentum from 0.7 to 0.6 and pressure from 0.3 to 0.2), started with frist order then switched to second order when it converged, ) Result is looking way better than before, but there are still some jumps in the residuals. Another problem is the area weighted average velocity. It is oscillating very much. Any Ideas what I could do to obtain good results? Picture: Uploaded with ImageShack.us thank you! PS:Sorry for not uploading a picture of the mesh. I will do that today evening. 

March 25, 2013, 07:05 

#8 
Member
Thiagu
Join Date: Oct 2012
Location: India
Posts: 57
Rep Power: 4 
Good progress. But need the picture of your setup.
comments # Area weg. avg velocity @ which location ? # how about the overall mesh distribution # mesh distribution in wake region (where the velocity gradients are more) # for extenal flow one equation (spalart allmaras) model is preferred , but i'm not sure check in fluent recommendation. # how close the BCs and object (buliding) 

March 25, 2013, 13:26 

#9 
Senior Member
Alex
Join Date: Jun 2012
Location: Germany
Posts: 1,097
Rep Power: 19 
Since you could afford 5000 Iterations in the first run, you can decrease the URFs further (0.7 to 0.6 doesnt make much difference).
I recommend 0.30.2 for momentum and 0.1 for pressure. Additionally, you should use a first order upwind scheme for the momentum discretization. If the solution converges, you can still switch to second order from this initialization. 

March 27, 2013, 11:52 

#10  
Senior Member
OJ
Join Date: Apr 2012
Location: United Kindom
Posts: 475
Rep Power: 11 
Quote:
Quote:
It may help to use first order scheme and kepsilon model untill you see some stability. Both of these induce a muchneeded diffusion to stabilise the turbulent instabilities in the initial part of solution. Once you see some stability, you can switch to second order. Also, you can explore the blended factor and choose the order of accuracy for momentum between 1 and 2(say 1.5). This should help in smooth convergence. Also, try FMG initialisation, to see if it helps. Additionally, it is a thumbrule to keep the addition of URFs for pressure and momentum as 1 for SIMPLE based schemes. But this is not always possible every time, as perhaps is the case here. 

March 27, 2013, 12:11 

#11  
Senior Member
Alex
Join Date: Jun 2012
Location: Germany
Posts: 1,097
Rep Power: 19 
Quote:
When I reduce the URFs, i reduce both pressure and momentum simultaneously and never got into trouble because they didnt add to 1. Quote:
Quote:


March 28, 2013, 16:58 

#12  
Senior Member
OJ
Join Date: Apr 2012
Location: United Kindom
Posts: 475
Rep Power: 11 
Quote:
Peric (Computational Methods for Fluid Dynamics) outlined an elaborate proof of this. The momentum equation can be represented as: (1) P being the point of interest and l being neighbouring points. For m coefficient loops withing each timestep in SIMPLE solver, source matrices are updated as: (2) is latest coefficient loop value of u. Above equation can be written as: (3) Or, (4) where Thus we build Poisson equation for pressure and obtain that satisfies continuity equation but not momentum equation nor does the pressure. We define as (5) The momentum equation thus becomes: (6) We now solve for pressure correction. It can be shown with some mathematics that (7) In SIMPLE, we omit and write : (8) Problem arises in equation equation 8. We need to use pressure under relaxation otherwise the simplifications produce overpredicted pressure. Thus we use under relaxation factor for pressure and rewrite the equation 4 for as (9) From equation 8 and 9: (10) From equation 7 and 10 (11) Now, here comes the velocity under relaxation factor, which is introduced in momentum equation 1: (12) Thus (13) with additional source term in equation 12. We also know originally. From equation 13 with additional source term in momentum equation due to under relaxation factor, we have : (14) From equation 11 and 14, Or Hushhhhhhh! There are many assumptions in this illustrations. Peric decided to do some trial and errors. You can read detailed analysis in his paper : ANALYSIS OF PRESSUREVELOCITY COUPLING ON NONORTHOGONAL GRIDS. I have attached images of study he had done for different and . According to him, was stablest for value of 0.2 for a wide range of . Differnet graphs include different configurations he did and for complex flows, the sum of the underrelaxation factors mattered. He corrected his hypothesis later to propose that for more wider applicability, the sum of and should be 1.1! OJ 

March 28, 2013, 17:08 

#13  
Senior Member
OJ
Join Date: Apr 2012
Location: United Kindom
Posts: 475
Rep Power: 11 
Quote:
Navigate to solve > set > numerics Keep entering till you get to: "1storder to higherorder blending factor [min=0.0  max=1.0]: " Here you can specify the factor. 0 means first order. 1 means second order. 0.5 means 1.5 etc. Use of blending factor will make convective fluxes more diffusive, inducing some stability. But make sure in original setting, you have specified discretization as second order. OJ 

March 28, 2013, 20:38 

#14 
Senior Member
Astio Lamar
Join Date: May 2012
Location: Pipe
Posts: 154
Rep Power: 5 
what I recommend before all, check you mesh. make sure that you have enough fine mesh. check for the skewness. If you have low quality, you will not have a converge solution. Moreover, big size variation, you will have fluctuation in the residuals.


Thread Tools  
Display Modes  


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Reason for oscillating residuals  fayaazhussain  Main CFD Forum  3  August 21, 2014 10:31 
Solution not converging, but oscillating residuals around a constant value  Irene  FLUENT  2  February 7, 2012 12:55 
Oscillating Residuals  Cairol  FLUENT  1  July 28, 2006 01:47 
Oscillating Residuals in Finer Mesh Case  Jake  FLUENT  3  June 16, 2005 09:34 
oscillating residuals  dave  FLUENT  2  December 10, 2004 04:01 