
[Sponsors] 
January 14, 2012, 19:52 
modeling potential flow

#1 
New Member
ab
Join Date: Jun 2010
Posts: 5
Rep Power: 6 
Hi,
I wonder if anyone can suggest that, whether it is possible to model a flow domain defined by potential flow theory i.e. irrotational flow using FLUENT. If so, how? Thnx. 

January 15, 2012, 14:18 

#2 
Senior Member
Lucky Tran
Join Date: Apr 2011
Location: Orlando, FL USA
Posts: 448
Rep Power: 10 
Yes. Use the inviscid model for your viscous model.
Potential flow and inviscid flows are the same, depending on what background you have in fluids they are called one or the other or both. 

January 15, 2012, 14:59 

#3 
New Member
ab
Join Date: Jun 2010
Posts: 5
Rep Power: 6 
Are you sure? To my knowledge, potential flow can be viscous and inviscid depending upon the viscosity condition implemented in the flow. So, the point I would like to mention that, in FLUENT, all option to define a flow is kind of realistic approach. However, potential flow is sort of simplistic approach with sum assumption that makes it irrotational, which I don't know if at all feasible in practice and so, if FLUENT can model it, that is my question? If possible in FLUENT, what to select under DEFINE>MODELS>SOLVER and under DEFINE>MODELS>VISCOUS?
Thnx. 

January 15, 2012, 17:12 

#4  
Senior Member
Lucky Tran
Join Date: Apr 2011
Location: Orlando, FL USA
Posts: 448
Rep Power: 10 
Quote:
Fluent allows you to model inviscid flows, the inviscid potential flows, by selecting the inviscid flow model under viscous models. You can use either solver, but the pressurebased solver is cheaper, simpler, and should suffice. 

January 15, 2012, 17:35 

#5 
New Member
ab
Join Date: Jun 2010
Posts: 5
Rep Power: 6 
Ok. Thnx Lucky.


January 16, 2012, 02:46 

#6 
Member
Phoevos
Join Date: Mar 2009
Posts: 84
Rep Power: 7 
I would be hesitant using fluent inviscid solver to solve a potential flow. The reason for that is that fluent solves the NS equations, which when viscosity is omitted reduce to the Euler equations.
Now, Euler equations can be solved using potential flow theory, assuming the flow is irrotational and steady state. Generally it is valid to assume so, since if there is no viscosity, there is no reason for the fluid elements to start rotating, right? However, since fluent does not solve the potential flow model, but the Euler equations, the inherent numerical viscosity of the used schemes (even if you use the highest order schemes possible, which will limit numerical viscosity), will produce viscosity and vorticity effects, which will give a totally different answer from the expected, when solving pure potential flow (Δφ=0, solve for φ and then spatial derivatives of φ give u,v,w). A simple experiment to check this would be to solve flow over a cylinder with the fluent inviscid model (steady state). You will see that pressure will not be fully recovered after the cylinder (D' alamberts paradox : http://en.wikipedia.org/wiki/D%27Alembert%27s_paradox), as it would be expected from a pure potential flow solver. On the other hand you will get small vortices after the cylinder and eventually you will get drag (again contrary to what you would expect from potential flow). To sum up, using inviscid fluent for potential flow is, according to my opinion, inaccurate (inaccurate here means that you won't get the expected, from potential theory, results  the results you'll get will be closer to reality, than the potential theory, though). You should use another software for that (for example Comsol has the ability to solve Laplace equation, which is used for potential flow). However, using inviscid fluent solver, can still give you an initial flow field for more complex physics. Any comments are welcome. 

January 16, 2012, 11:02 

#7  
Senior Member
Lucky Tran
Join Date: Apr 2011
Location: Orlando, FL USA
Posts: 448
Rep Power: 10 
Quote:


January 16, 2012, 11:13 

#8 
Member
Phoevos
Join Date: Mar 2009
Posts: 84
Rep Power: 7 
Ehm, sorry but solving the Euler equations does not mean that there is no numerical dissipation. Numerical dissipation (or numerical viscosity) comes from the truncation of the Taylor expansion at the derivative approximations and it is inherent in any numerical scheme.
Increased resolution and higher order schemes will limit numerical dissipation, but it will always be there. According to my experince, trying to solve inviscid flow (Euler equations) with Fluent will not result to the same results as a potential flow solver and, from my experience again, results will differ substantially. I don't know if anyone else has any experience with the inviscid flow solver, but if you perform the small numerical experiment I described above you'll see what I mean when I say that fluent is not appropriate for simulating potential flow. See also this post: Potential incompressible flow around an aerofoil (It is somewhat old, but I don't think that fluent's numerics on inviscid solver changed much) or this one: potential flow vs. Euler flow Again any comments welcome. 

January 16, 2012, 11:25 

#9  
Senior Member
Lucky Tran
Join Date: Apr 2011
Location: Orlando, FL USA
Posts: 448
Rep Power: 10 
Quote:


January 16, 2012, 11:36 

#10 
Member
Phoevos
Join Date: Mar 2009
Posts: 84
Rep Power: 7 
Well I have to disagree (depending on what you mean dealt with). Numerical dissipation's influence can be minimised/lessened/reduced but cannot be absolutely removed. That is what you are doing when you are testing for grid dependence, testing when numeircal dissipation is very small so you can assume that your solution is unaffected, within a tolerance, by it. It will always be there, though.


Thread Tools  
Display Modes  


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
A role of combustion modeling in flow solver?  Yoon  Main CFD Forum  0  November 26, 2006 12:00 
transform navierstokes eq. to eulereq.  pxyz  Main CFD Forum  37  July 7, 2006 08:42 
potential energy& static enthalpy in buoyant flow  Atit  CFX  0  May 3, 2006 10:05 
mold flow modeling  Pei Hsieh  Main CFD Forum  0  May 4, 2005 10:08 
CFD Modeling of Twophase Flow in Small Dia.Tubes  Eric Poindexter  Main CFD Forum  2  September 22, 2000 09:21 