
[Sponsors] 
May 14, 2012, 09:42 
Theory  Flow between two cylindrical plates

#1 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
I have to theoretically calculate the flow between two cylindrical plates.
This is the spec: Two plates of 15cm radius separated between them by a 1cm gap flow between those plates to be studied. And its laminar flow *I know how the flow between rectangular parallel plates of infinite length works, but not how this works, Can anyone give any link to a theory or any suggestions to solve this? 

May 22, 2012, 09:44 

#2 
New Member
Eugeny
Join Date: Feb 2011
Location: Ukraine
Posts: 9
Rep Power: 6 
"Cylindrical plates"? So it cylinder or plate?


May 22, 2012, 11:12 

#3 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
It is two plates parallel to each other. the places are cylindrical in shape with 0.15 m radius and 1mm height each. So i have a flow of air passing between these plates. I want to know if there is a theory for such a system, or how could it be derived


May 22, 2012, 13:06 

#4 
New Member
Eugeny
Join Date: Feb 2011
Location: Ukraine
Posts: 9
Rep Power: 6 
Can you draw the pictures, eg. in mspaint?


May 22, 2012, 13:13 

#5 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
I have attached the file with this post


May 22, 2012, 13:48 

#6 
New Member
Eugeny
Join Date: Feb 2011
Location: Ukraine
Posts: 9
Rep Power: 6 
How to draw this model? I do not understand...


May 22, 2012, 14:06 

#7 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
try this image


May 22, 2012, 14:24 

#8 
New Member
Eugeny
Join Date: Feb 2011
Location: Ukraine
Posts: 9
Rep Power: 6 

May 22, 2012, 14:29 

#9 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
yes the flow is through the thin region not the cross sectional area.
The flow is betwwen the plates 

May 22, 2012, 14:34 

#10 
New Member
Eugeny
Join Date: Feb 2011
Location: Ukraine
Posts: 9
Rep Power: 6 
Seems i have never seen before theoretical solution, simulation can be help?


May 22, 2012, 14:35 

#11 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
I have the results for the simulation, but need a theory to validate it. Thats what I am currently struggling upon.


May 23, 2012, 12:20 

#12 
Senior Member
Join Date: Dec 2011
Location: Madrid, Spain
Posts: 133
Rep Power: 7 
Hi Bageshwar, if I have understood correctly, your problem is basically a Poiseuille flow between two concentric cylinders, is that correct?
The solution is pretty straightforward, just take the NavierStokes equations in cylindrical coordinates and start killing terms! For instance:  Stationary flow: kill terms  No variation along z coordinate (axis of the cylinders): kill terms, except for pressure!  No variation along circumferential coordinate: kill terms Considering incompressible flow you do not need the continuity nor the energy equations so you end up with something like this: , where P is pressure, r is the radius, z is the direction along the axis and u is the velocity. Solving for you get: Now find the values of A and B imposing boundary conditions at the inner and outer cylinder walls, u=0 at R1 and R2 respectively: and So that's the velocity profile in the radial direction. Then you will just have to substitute for the numerical data of your problem. Is this what you were looking for? (please say yes! ). Cheers. 

May 23, 2012, 12:24 
just trying to understand

#13 
New Member
Patrick Godon
Join Date: Apr 2010
Posts: 19
Rep Power: 8 
I suppose the disks are not rotating, these are just two circular (not cylindrical) plates. The flow between them will depend on the viscosity and velocity, or if you prefer on the Reynolds number. You will have two boundary layers forming, one on each plate. If the Reynolds number is small, these two boundary layers might actually join together, which would likely happen far from the circular edges, towards the center. There the flow velocity will be minimal (depending on the viscosity the velocity could even be zero in the center of the circular plates). I expect the velocity to be maximal (but still smaller than the "outside" bulk velocity) at the edges, especially the edges where the flow is tangential to the circular boundary. If the Reynolds number is large, I would expect microscopic boundary layers and the flow might be almost unaffected between the plates. On the overall I expect (guts feeling) the flow velocity to be minimal towards the center (maybe within a given a radius it could have a constant value which would decrease with decreasing Reynolds number). That's my 5 cents comments. I hope it helps.
To me it seems it might be a good way to maybe use this configuration to possibly create almost a stationary flow between the plates in the center, maybe even this could be use for a two phase flow to separate or isolate one of the two components (say particles). Am I guessing right!? 

May 23, 2012, 12:37 

#14 
Senior Member
Join Date: Dec 2011
Location: Madrid, Spain
Posts: 133
Rep Power: 7 
Ok, now I see that I did not understand the configuration, damn!
Could you please explain where is the inlet and where is the outlet? I do not clearly see it. Do you inject it through a hole in the center? or the flow enters radially towards the center and goes out through a hole there? Cheers. 

May 24, 2012, 02:58 

#15 
New Member
Bhageshvar
Join Date: Oct 2011
Posts: 11
Rep Power: 6 
Hi all, the disks are not rotating. It is a compressible flow, and I do not want a stationary solution, but i need a time dependent solution. Moreover, Its a flow between two thin cylinders let us assume. the thin cylinders are parallel to each other, the flow just passes between the gaps as I had mentioned in the previous images.
Please let me know. 

Thread Tools  
Display Modes  


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Radial flow between parallel plates  gfcoppola  OpenFOAM Running, Solving & CFD  1  October 22, 2010 05:42 
Can 'shock waves' occur in viscous fluid flows?  diaw  Main CFD Forum  104  February 16, 2006 06:44 
Cylindrical laminar flow  Toni  CDadapco  2  July 13, 2004 06:44 
need 3D cylindrical source code for laminar flow  S. D. Ding  Main CFD Forum  0  July 23, 2002 02:01 
Inviscid Drag at subsonic, subcritical Mach #  Axel Rohde  Main CFD Forum  1  November 19, 2001 13:19 