# Theory - Flow between two cylindrical plates

 Register Blogs Members List Search Today's Posts Mark Forums Read

 May 14, 2012, 09:42 Theory - Flow between two cylindrical plates #1 New Member   Bhageshvar Join Date: Oct 2011 Posts: 12 Rep Power: 6 I have to theoretically calculate the flow between two cylindrical plates. This is the spec: Two plates of 15cm radius separated between them by a 1cm gap flow between those plates to be studied. And its laminar flow *I know how the flow between rectangular parallel plates of infinite length works, but not how this works, Can anyone give any link to a theory or any suggestions to solve this?

 May 22, 2012, 09:44 #2 New Member   Eugeny Join Date: Feb 2011 Location: Ukraine Posts: 9 Rep Power: 7 "Cylindrical plates"? So it cylinder or plate?

 May 22, 2012, 11:12 #3 New Member   Bhageshvar Join Date: Oct 2011 Posts: 12 Rep Power: 6 It is two plates parallel to each other. the places are cylindrical in shape with 0.15 m radius and 1mm height each. So i have a flow of air passing between these plates. I want to know if there is a theory for such a system, or how could it be derived

 May 22, 2012, 13:06 #4 New Member   Eugeny Join Date: Feb 2011 Location: Ukraine Posts: 9 Rep Power: 7 Can you draw the pictures, eg. in mspaint?

May 22, 2012, 13:13
#5
New Member

Bhageshvar
Join Date: Oct 2011
Posts: 12
Rep Power: 6
I have attached the file with this post
Attached Images
 Untitled.png (3.2 KB, 17 views)

 May 22, 2012, 13:48 #6 New Member   Eugeny Join Date: Feb 2011 Location: Ukraine Posts: 9 Rep Power: 7 How to draw this model? I do not understand...

May 22, 2012, 14:06
#7
New Member

Bhageshvar
Join Date: Oct 2011
Posts: 12
Rep Power: 6
try this image
Attached Images
 Capture.PNG (13.8 KB, 17 views)

 May 22, 2012, 14:24 #8 New Member   Eugeny Join Date: Feb 2011 Location: Ukraine Posts: 9 Rep Power: 7 so, no?

 May 22, 2012, 14:29 #9 New Member   Bhageshvar Join Date: Oct 2011 Posts: 12 Rep Power: 6 yes the flow is through the thin region not the cross sectional area. The flow is betwwen the plates

 May 22, 2012, 14:34 #10 New Member   Eugeny Join Date: Feb 2011 Location: Ukraine Posts: 9 Rep Power: 7 Seems i have never seen before theoretical solution, simulation can be help?

 May 22, 2012, 14:35 #11 New Member   Bhageshvar Join Date: Oct 2011 Posts: 12 Rep Power: 6 I have the results for the simulation, but need a theory to validate it. Thats what I am currently struggling upon.

 May 23, 2012, 12:20 #12 Senior Member   Join Date: Dec 2011 Location: Madrid, Spain Posts: 134 Rep Power: 7 Hi Bageshwar, if I have understood correctly, your problem is basically a Poiseuille flow between two concentric cylinders, is that correct? The solution is pretty straightforward, just take the Navier-Stokes equations in cylindrical coordinates and start killing terms! For instance: - Stationary flow: kill terms - No variation along z coordinate (axis of the cylinders): kill terms, except for pressure! - No variation along circumferential coordinate: kill terms Considering incompressible flow you do not need the continuity nor the energy equations so you end up with something like this: , where P is pressure, r is the radius, z is the direction along the axis and u is the velocity. Solving for you get: Now find the values of A and B imposing boundary conditions at the inner and outer cylinder walls, u=0 at R1 and R2 respectively: and So that's the velocity profile in the radial direction. Then you will just have to substitute for the numerical data of your problem. Is this what you were looking for? (please say yes! ). Cheers.

 May 23, 2012, 12:24 just trying to understand #13 New Member   Patrick Godon Join Date: Apr 2010 Posts: 19 Rep Power: 9 I suppose the disks are not rotating, these are just two circular (not cylindrical) plates. The flow between them will depend on the viscosity and velocity, or if you prefer on the Reynolds number. You will have two boundary layers forming, one on each plate. If the Reynolds number is small, these two boundary layers might actually join together, which would likely happen far from the circular edges, towards the center. There the flow velocity will be minimal (depending on the viscosity the velocity could even be zero in the center of the circular plates). I expect the velocity to be maximal (but still smaller than the "outside" bulk velocity) at the edges, especially the edges where the flow is tangential to the circular boundary. If the Reynolds number is large, I would expect microscopic boundary layers and the flow might be almost unaffected between the plates. On the overall I expect (guts feeling) the flow velocity to be minimal towards the center (maybe within a given a radius it could have a constant value which would decrease with decreasing Reynolds number). That's my 5 cents comments. I hope it helps. To me it seems it might be a good way to maybe use this configuration to possibly create almost a stationary flow between the plates in the center, maybe even this could be use for a two phase flow to separate or isolate one of the two components (say particles). Am I guessing right!?

 May 23, 2012, 12:37 #14 Senior Member   Join Date: Dec 2011 Location: Madrid, Spain Posts: 134 Rep Power: 7 Ok, now I see that I did not understand the configuration, damn! Could you please explain where is the inlet and where is the outlet? I do not clearly see it. Do you inject it through a hole in the center? or the flow enters radially towards the center and goes out through a hole there? Cheers.

 May 24, 2012, 02:58 #15 New Member   Bhageshvar Join Date: Oct 2011 Posts: 12 Rep Power: 6 Hi all, the disks are not rotating. It is a compressible flow, and I do not want a stationary solution, but i need a time dependent solution. Moreover, Its a flow between two thin cylinders let us assume. the thin cylinders are parallel to each other, the flow just passes between the gaps as I had mentioned in the previous images. Please let me know.

 April 23, 2016, 01:19 #16 Senior Member   navid Join Date: Jan 2010 Posts: 109 Rep Power: 8 I know this is an old post but my answer might help someone in future. I guess you need to look for Analytical Solution of "Squeezing Flow" between circular plates. Squeezing Flow is a good keyword to search this topic.

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post gfcoppola OpenFOAM Running, Solving & CFD 1 October 22, 2010 05:42 diaw Main CFD Forum 104 February 16, 2006 06:44 Toni CD-adapco 2 July 13, 2004 06:44 S. D. Ding Main CFD Forum 0 July 23, 2002 02:01 Axel Rohde Main CFD Forum 1 November 19, 2001 13:19

All times are GMT -4. The time now is 10:26.