- **Main CFD Forum**
(*http://www.cfd-online.com/Forums/main/*)

- - **About the MUSCL scheme for compressible simulations**
(*http://www.cfd-online.com/Forums/main/114873-about-muscl-scheme-compressible-simulations.html*)

About the MUSCL scheme for compressible simulationsDear all,
I am studying the MUSCL (finite difference) scheme with the Steger-Warming splitting to solve compressible flows. One step is not clear for me. The scheme is U(n+1)_i,j=U(n)_i,j - dt/dx(F_i+1/2,j-F_i-1/2,j) (1D case) where F can be split into two parts. For example F_i+1/2,j= F^+_i+1/2,j + F^-_i+1/2,j Further, F^+_i+1/2,j=F^+(U_i+1/2,j_L), F^-_i+1/2,j=F^-(U_i+1/2,j_R) If we go inside to the expression of F^+(U_i+1/2,j_L), we see that it is expressed by the components of U_i+1/2,j_L and the eigenvalues of the coef matrix. My question is how to evaluate these eigenvalues? Shall I use to Roe average (between grid i and i+1) or just use the components of U_i+1/2,j_L to get u, u+a and u-a as these eigenvalues? Thanks. |

All times are GMT -4. The time now is 07:03. |