CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

artificial compressiblity?(pressure)

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   August 17, 1999, 00:32
Default artificial compressiblity?(pressure)
  #1
Lee, Juhee
Guest
 
Posts: n/a
hi, it is a typical problem.. i read Chorin's paper,"a numerical method for solving incompressible viscous flow.", about artificial compressiblity methods. i coded following the direction.i velocity field exactly, but didn't pressure field.i checked the program a few times, there is no error.

i used pressure this way. p=rho/delta

p: pressure rho : artificial density delta: artificial compressibility (=0.00032 as paper sais)

bye..
  Reply With Quote

Old   August 17, 1999, 01:20
Default Re: artificial compressiblity?(pressure)
  #2
John C. Chien
Guest
 
Posts: n/a
(1). Someone at NASA/ames and Rockwell/ Rocketdyne (now Boeing/Rocketdyne) used to work on 3-D incompressible flows using this method, back in mid 80's. (2). You can search AIAA journal for publications in this area, or get in touch with someone at NASA/ames research center. It was laminar flow calculations, as I recall.
  Reply With Quote

Old   August 17, 1999, 16:30
Default Re: artificial compressiblity?(pressure)
  #3
Quazi Hussain
Guest
 
Posts: n/a
I know that NASA has a CFD code based on artificial compressibility called INS-2D and INS-3D where INS stands for Incompressible Navier-Stokes. This is a pretty well established method and a lot of work has been done in this area so that a commercial-like code came out of it. I vaguely recall the name of one of the top persons in this group to be Kwak.

I myself did a very small amount of work in this area for a graduate level course project to find out what exactly Lee has found. I used it for 'channel flow' to find the velocity field to be o.k. whereas the pressure was truely checkerboard type. For 'cavity problem' without any inflow or outflow I again got decent velocity field. I did not have any experimental pressure field to compare my prediction against. I did not have the opportunity to continue reasearch in this area any further.

Again there is nothing new about this method. There is a lot of material out there if someone is truely interested. There is also User's Manual and Methodology for the NASA's INS codes. There are also plenty of publication by Kwak(?) and his group in aerospace related journals. Hope this helps!
  Reply With Quote

Old   August 17, 1999, 18:08
Default Re: artificial compressiblity?(pressure)
  #4
Juhee Lee
Guest
 
Posts: n/a
Thanks Chien and Hussain, it is a channel flow.

Channel is square, 0<=x<=1, 0<=y<=1.

The velocity is u=y(1-y)/4 v=0 at x=0 and x=1.

the exact solution is u=y(1-y)/4 v=0 p=c-x

where c is arbitrary constant in all domain.

u and v , i get, is predicted exactly and the trend of pressure, which p is only function of x, is correct. but the magnitude is too big, from 3.8 to -3.8. the pressure at instream is 3.8 and -3.8 at outstream. i was wondering that the pseudo-compressiblity has the limitation of pressure prediction.

thanks ahead.
  Reply With Quote

Old   August 18, 1999, 02:59
Default Re: artificial compressiblity?(pressure)
  #5
John C. Chien
Guest
 
Posts: n/a
(1). I did not work on this fancy method. (2). But in your test case, you can just use the exact analytical solution for u and v , and substitute u and v into the method. In this way, you can easily check out the formulation for the pressure portion of solution. (3). Actually, the test case is 1-D problem. So, why not just look at the 1-D part of the pressure solution. In this way, you should be able to tell whether this method is all right or not for the pressure solution. If it can not solve a simple 1-D problem, the the answer is clear.
  Reply With Quote

Old   August 18, 1999, 21:14
Default Re: artificial compressiblity?(pressure)
  #6
Paulo Zandonade
Guest
 
Posts: n/a
Lee,

I would check and see if the pressure gradients are correct. Since the pseudo-compressibility method is based on the incompressible equations the value of pressure used by the code is only important to provide an accurate calculation of its gradient. The coeficient used in the continuity equation for time-marching is optimized for faster convergence and not as a reflection of the true value of the pressure. Since you say the pressure trend is correct (by that I suppose the pressure gradients are similar to the experimental data) the algorithm is working as intended.

Hope I helped,

Paulo
  Reply With Quote

Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Artificial dissipation for NS equations, flow in a pipe RameshK Main CFD Forum 8 November 13, 2011 11:29
Artificial Dissipation TheBoyce Main CFD Forum 2 March 23, 2011 16:27
Artificial viscosity rads CFX 2 July 31, 2006 08:02
artificial viscosity rvndr Main CFD Forum 1 March 2, 2004 11:24
Artificial Viscosity Girish Bhandari Main CFD Forum 5 January 13, 2001 14:22


All times are GMT -4. The time now is 18:47.