# Reynolds Stresses in Cylindrical Coordinates

 User Name Remember Me Password
 Register Blogs Members List Search Today's Posts Mark Forums Read

 LinkBack Thread Tools Display Modes
 February 7, 2009, 14:38 Reynolds Stresses in Cylindrical Coordinates #1 steve Guest   Posts: n/a Hello, I'm struggling with the derivation of the above. I have the 'usual' stress terms (in cartesian coordiantes they are rho u v, essentially), but I'm thinking that there are extra terms. For any one who 'speaks' latex2e, I've the text at the bottom of this post. anyone able to tell me if I am missing something? Thanks Steve \begin{subequations} \begin{multline} \rho \left(\frac{\pa \overline{u_r}}{\pt} + \overline{u_r} \frac{\pa \overline{u_r}}{\pa r} + \frac{\overline{u_{\theta}}}{r} \frac{\pa \overline{u_r}}{\ptheta} + \overline{u_z} \frac{\pa \overline{u_r}}{\pa z} - \frac{\overline{u_{\theta}}^2}{r}\right) =-\frac{\pa p}{\pa r} +\dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pr}\left(r \frac{\pa \overline{u_r}}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 \overline{u_r}}{\pa \theta^2} + \frac{\pa^2 \overline{u_r}}{\pa z^2} -\frac{\overline{u_r}}{r^2} - \frac{2}{r^2}\frac{\pa \overline{u_{\theta}}}{\pa \theta}\right] + \rho g_r+\frac{\mu}{3}\left(\frac{1}{r}\frac{\pa(r \overline{u_r})}{\pr}\right)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{r}}\r ight)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{r}u'_{\theta}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{r}u'_{z}}\r ight) - \frac{\overline{u'_{\theta}}^2}{r} \end{multline} \begin{multline} \rho \left(\frac{\pa u_{\theta}}{\pa t} + u_r \frac{\pa u_{\theta}}{\pa r} + \frac{u_{\theta}}{r} \frac{\pa u_{\theta}}{\pa \theta} + u_z \frac{\pa u_{\theta}}{\pa z} + \frac{u_r u_{\theta}}{r}\right) =-\frac{1}{r}\frac{\pa p}{\pa \theta} +\dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pa r}\left(r \frac{\pa u_{\theta}}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 u_{\theta}}{\pa \theta^2} + \frac{\pa^2 u_{\theta}}{\pa z^2} + \frac{2}{r^2}\frac{\pa u_r}{\pa \theta} - \frac{u_{\theta}}{r^2}\right] + \rho g_{\theta}+\frac{\mu}{3}\left(\frac{1}{r}\frac{\pa (u_{\theta})}{\ptheta}\right)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{\thet a}}\right)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{\theta}u'_{\theta}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{\theta}u'_{ z}}\right) + \frac{\overline{u'_{r}u'_{\theta}}}{r} \end{multline} \begin{multline} \rho \left(\frac{\pa u_z}{\pa t} + u_r \frac{\pa u_z}{\pa r} + \frac{u_{\theta}}{r} \frac{\pa u_z}{\pa \theta} + u_z \frac{\pa u_z}{\pa z}\right) =-\frac{\pa p}{\pa z} + \dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pa r}\left(r \frac{\pa u_z}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 u_z}{\pa \theta^2} + \frac{\pa^2 u_z}{\pa z^2}\right] + \rho g_z+\frac{\mu}{3}\left(\frac{\pa(u_{z})}{\pz}\righ t)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{z}}\r ight)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{\theta}u'_{z}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{z}u'_{z}}\r ight) \end{multline}\label{navier-stokes-rs} \end{subequations}

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post falopsy Main CFD Forum 44 January 15, 2014 03:17 Markus FLUENT 0 January 23, 2008 06:49 Phil Main CFD Forum 1 October 2, 2006 04:29 JF Main CFD Forum 6 June 2, 2005 22:57 Franz Wingelhofer CFX 0 December 28, 1999 08:46

All times are GMT -4. The time now is 12:16.

 Contact Us - CFD Online - Top