CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Main CFD Forum

basic approach to turbomachinery

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   July 15, 2000, 06:30
Default basic approach to turbomachinery
  #1
Mark Render
Guest
 
Posts: n/a
Hi all,

having no experience in turbomachinery related CFD I have some basic questions. As far as I have heard people seldom model the whole rotor and stator using moving grids, which is the most logic way for a beginner (although it might be quite time consuming). Instead they using some kind of rotating coordinate systems. Could someone give some comments what is behind that approach and what errors do I get with that simplification compared to the sliding mesh technique of the whole rotor ? Do I still have to run the job in transient mode ?

Cheers,

Mark
  Reply With Quote

Old   July 15, 2000, 20:35
Default Re: basic approach to turbomachinery
  #2
John C. Chien
Guest
 
Posts: n/a
(1). Even for a person like me, several years in turbomachinery, I don't ask such questions at all. (2). In the turbomachinery design, we handle the design piece-by-piece, in a rather idealized way. In other words, when you are dealing with the nozzle (or the stator), you used stationary reference frame attached to the nozzle. In this way, the surface is always stationary, and you can easily apply the boundary conditions. (3). When you move on to the rotor, you use the rotating reference frame rotating with the rotor. In this way, the blade surface is still stationary in the rotating frame, but the inlet boundary conditions must be converted to the rotating frame from the stator exit conditions. The conversion is a very simple vector conversion, with the rotor tangential velocity involved. (4). At theis point, the nozzle exit condition is always averaged in the circumferential direction first, so that it can be used as the inlet condition for the rotor calculation. (5). The design is always steady state, and there is no rotor-stator interaction issue. (5). For small rotor-stator gaps, the leading edge region of the rotor flow will in reality have some upstram effect on the nozzle (stator) trail edge flow field. This effect has been attempted by calculating the multi-stage flow which include the stators and the rotors at the same time, but still under the steady state condition. (6). Whether this type of flow can be done properly is someting else to be studies. (7). The real flow is everywhere 3-D transient. It is possible to simulate such flow field, but the transient 3-D flow is very time consuming, and it is not practical as a parametric design tool yet. (8). Since the turbulence model alone is still not reliable in "most" cases, the real value of such multi-stage calculation is quite limited. It has been used to show that the "clocking" (relative circumferential position of the blade between blade rows) can reduce the loss by a small amount, because of the transient wake and leading edge interaction. (9). So, you have three stages of simulation: (a).from the design side, it is row-by-row steady state calculation, with exit conditions averaged. (b). multi-stage steady calculations, with exit condition averaged. (c). true multi-stage transient calcuations. (boundary conditions between the stationary and the rotating frames of reference must be properly handled. In this case, you have the sliding meshes)
  Reply With Quote

Old   July 17, 2000, 09:59
Default Re: basic approach to turbomachinery
  #3
Rich E
Guest
 
Posts: n/a
If you think that your rotor and stator are closely coupled then a transient solution is really needed. However there are a couple of work arounds that you could use to avoid waiting 'till Christmas for the answers: a) If you're analysing axial turbomachinery that is radially stacked, running the CFD on a 2D slice (say at mid-span) may be valid (of course you won't get any endwall effects or tip leakage). b) Take advantage of any axisymmetry. If your turbomachine has 40 stators and 60 rotors then you only need to model 2 stators and 3 rotors and add a periodic boundary condition to take account of the rest of the blade row.
  Reply With Quote

Old   July 20, 2000, 15:42
Default Re: basic approach to turbomachinery
  #4
clifford bradford
Guest
 
Posts: n/a
comment on (b) it is often the case that the number of blades in an adjacent rotor and stator are relatively prime. meaning that the highest common divisor is 1 (eg 21 and 25). so often the use of periodic bc to reduce the size of the domain is not possible. this is done for structural reasons
  Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Lattice Boltzmann Approach philippose OpenFOAM 18 January 8, 2013 03:46
Basic Blade Design Code apoorv Main CFD Forum 0 April 5, 2010 06:37
Turbomachinery at OpenFOAM Workshop Milan 2008 hani OpenFOAM 0 March 21, 2008 03:33
lagrangian vs eulerian approach leopoldo luongo CFX 1 June 19, 2006 10:12
Lagrangian Approach Biswajit Sarkar Main CFD Forum 3 August 4, 2005 13:42


All times are GMT -4. The time now is 06:33.