CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Main CFD Forum

need the eigen vectors and their inverses for 2D Euler equations

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   July 14, 2009, 17:26
Default need the eigen vectors and their inverses for 2D Euler equations
  #1
New Member
 
Join Date: Jul 2009
Posts: 6
Rep Power: 8
Ashley is on a distinguished road
Hi,
I need the eigen vectors in both x and y directions and their analytical inverses for the 2D Euler equations.Does anybody know any reference other than haffmann?
Ashley is offline   Reply With Quote

Old   July 15, 2009, 06:27
Post find here....
  #2
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 8
vinayender is on a distinguished road
Hi Ashely,

for 2D flows we have 4 eigen values
u_perpendicuar+a, u_perpendicuar , u_perpendicuar, u_perpendicuar-a

eigen vectors are

for u_perpendicuar-a
( 1
u-a*nx
v-a*ny
H-u_perpendicular*a)

for u_perpendicuar
( 0
-a*ny
a*nx
u_perpendicular*a)

for u_perpendicuar
( 1
u
v
0.5*(u^2+v^2))

for u_perpendicuar+a
( 1
u+a*nx
v+a*ny
H+u_perpendicular*a)


where nx and ny are the unit normal vectors for the face across which we are computing the flux...

Please let me know if you wnat more information or clarification on this....
__________________
Thanks ,
Vinayender

Last edited by vinayender; July 16, 2009 at 00:47. Reason: correcting
vinayender is offline   Reply With Quote

Old   July 15, 2009, 15:13
Default
  #3
New Member
 
Join Date: Jul 2009
Posts: 6
Rep Power: 8
Ashley is on a distinguished road
Hi,
Thank you so much for your answer.
I know that in x-direction the eigen values are:
u-a,u,u,u+a

and the eigen vectors are

(/1,1,0,1/)
(/(ux(i,j)-ax(i,j)),ux(i,j),0,(ux(i,j)+ax(i,j))/)
(/vx(i,j),vx(i,j),1,vx(i,j)/)
(/(Hx(i,j)-ux(i,j)*ax(i,j)),0.5*(uh(i,j)^2+vx(i,j)^2),vx(i,j) ,(Hx(i,j)+ux(i,j)*ax(i,j))/)

and in y-direction the eigen values are

v-a,v,v,v+a
Now what are the eigenvectors in y-direction?
thank you very much
Ashley is offline   Reply With Quote

Old   July 16, 2009, 10:30
Default
  #4
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 8
vinayender is on a distinguished road
I have modified my earlier post a little...
those are the eigen values and vectors normal to a given face...


If you are using these values for coding and getting flux across a face, then all you will be needed is flux perpendicuar because flux perpendicuar to a face is the only component which contributes to your residue of a cell.
Hence if you have the eigen values and eigen vector normal to a face it would be sufficient.....
__________________
Thanks ,
Vinayender
vinayender is offline   Reply With Quote

Old   July 16, 2009, 12:09
Default There is a book
  #5
Member
 
Join Date: Mar 2009
Posts: 33
Rep Power: 8
gory is on a distinguished road
Hi Ashley,

I think that the information posted by vinayender should be enough (you can use Maple, for example, to generate the inverse) for you.

But there is a book which contains the (right-)eigenvector matrices and the corresponding inverse matrices (i.e., the left-eigenvctor matrices) for various forms of the Euler equations in 1, 2 , and 3D: conservative, primitive, symmetric forms, all interms of a face normal. Also interesting is that it contains the absolute value of the Jacobian (normal to a face), which is often needed for upwind schemes, expressed in terms of only the face normal (no tangent vectors needed). I personally find it very useful. Check out the http://www.cfdbooks.com for details if you're interested.

Good Luck!
Gory
gory is offline   Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT -4. The time now is 02:10.