# 2D Heat Conduction - MATLAB help

 Register Blogs Members List Search Today's Posts Mark Forums Read

 July 12, 2010, 05:56 2D Heat Conduction - MATLAB help #1 New Member   Abe Join Date: May 2010 Posts: 4 Rep Power: 7 Hi all, I am working on the problem below, and I wrote the code, but it's not working. Can anyone help me out? And even any ideas on how to improve the code to make it more succinct? http://i25.tinypic.com/2v0zi8m.jpg Basically, it is a 2D conduction problem with convection heat transfer on the top, insulated at the bottom edge, and temperature held constant at the left and right edge. The dimensions of the plate are 0.8x0.7 with dx=dy=dx=0.1. I used the symmetry, and the just worked on the left side of the symmetry line (nodes 1-40), wrote nodal equations (finite difference eqs) for each node, and then created a 40x40 matrix in matlab to solve system of unknown temperatures. However, my answer is not even remotely close. It doesn't matter what values I choose for k, h, Tb, q_dot, or any other constants. Here's my code. It's very long. I hope there's an easier way to implement this. IF there is, can someone help me or give me any ideas? clc clear %Material Properties & Constants k = 205; h = 10; qdot = 1000; Tinf = 293.15; Tb = 423.15; dx = 0.1; c = (-qdot*dx^2)/k; d = 2*((h*dx)/k)*Tinf; %Matrices n = 5*8; a = zeros(n,n); b = zeros(n); %node(1) a(1,1)=-2*((h*dx)/k+1); a(1,2)=1; a(1,6)=1; b(1)=c-d; %node(2) a(2,2)=-2*((h*dx)/k+2); a(2,1)=1; a(2,3)=1; a(2,7)=2; b(2)=c-d; %node(3) a(3,3)=-2*((h*dx)/k+2); a(3,2)=1; a(3,4)=1; a(3,8)=2; b(3)=c-d; %node(4) a(4,4)=-2*((h*dx)/k+2); a(4,3)=1; a(4,5)=1; a(4,9)=2; b(4)=c-d; %node(5) a(5,5)=-2*((h*dx)/k+2); a(5,4)=2; a(5,10)=2; b(5)=c-d; %node(6) a(6,6)=Tb; b(6)=0; %node(7) a(7,7)=-4; a(7,2)=1; a(7,6)=1; a(7,8)=1; a(7,12)=1; b(7)=c; %node(8) a(8,8)=-4; a(8,3)=1; a(8,7)=1; a(8,9)=1; a(8,13)=1; b(8)=c; %node(9) a(9,9)=-4; a(9,4)=1; a(9,8)=1; a(9,10)=1; a(9,14)=1; b(9)=c; %node(10) a(10,10)=-4; a(10,5)=1; a(10,9)=2; a(10,15)=1; b(10)=c; %node(11) a(11,11)=Tb; b(11)=0; %node(12) a(12,12)=-4; a(12,7)=1; a(12,11)=1; a(12,13)=1; a(12,17)=1; b(12)=c; %node(13) a(13,13)=-4; a(13,8)=1; a(13,12)=1; a(13,14)=1; a(13,18)=1; b(13)=c; %node(14) a(14,14)=-4; a(14,8)=1; a(14,13)=1; a(14,15)=1; a(14,19)=1; b(14)=c; %node(15) a(15,15)=-4; a(15,10)=1; a(15,14)=2; a(15,20)=1; b(15)=c; %node(16) a(16,16)=Tb; b(16)=0; %node(17) a(17,17)=-4; a(17,12)=1; a(17,16)=1; a(17,18)=1; a(17,22)=1; b(17)=c; %node(18) a(18,18)=-4; a(18,13)=1; a(18,17)=1; a(18,19)=1; a(18,23)=1; b(18)=c; %node(19) a(19,19)=-4; a(19,14)=1; a(19,18)=1; a(19,20)=1; a(19,24)=1; b(19)=c; %node(20) a(20,20)=-4; a(20,15)=1; a(20,19)=2; a(20,25)=1; b(20)=c; %node(21) a(21,21)=Tb; b(21)=0; %node(22) a(22,22)=-4; a(22,17)=1; a(22,21)=1; a(22,23)=1; a(22,27)=1; b(22)=c; %node(23) a(23,23)=-4; a(23,18)=1; a(23,22)=1; a(23,24)=1; a(23,28)=1; b(23)=c; %node(24) a(24,24)=-4; a(24,19)=1; a(24,23)=1; a(24,25)=1; a(24,29)=1; b(24)=c; %node(25) a(25,25)=-4; a(25,20)=1; a(25,24)=2; a(25,30)=1; b(25)=c; %node(26) a(26,26)=Tb; b(26)=0; %node(27) a(27,27)=-4; a(27,22)=1; a(27,26)=1; a(27,28)=1; a(27,32)=1; b(27)=c; %node(28) a(28,28)=-4; a(28,23)=1; a(28,27)=1; a(28,29)=1; a(28,33)=1; b(28)=c; %node(29) a(29,29)=-4; a(29,24)=1; a(29,28)=1; a(29,30)=1; a(29,34)=1; b(29)=c; %node(30) a(30,30)=-4; a(30,25)=1; a(30,29)=2; a(30,35)=1; b(30)=c; %node(31) a(31,31)=Tb; b(31)=0; %node(32) a(32,32)=-4; a(32,27)=1; a(32,31)=1; a(32,33)=1; a(32,37)=1; b(32)=c; %node(33) a(33,33)=-4; a(33,28)=1; a(33,32)=1; a(33,34)=1; a(33,38)=1; b(33)=c; %node(34) a(34,34)=-4; a(34,29)=1; a(34,33)=1; a(34,35)=1; a(34,39)=1; b(34)=c; %node(35) a(35,35)=-4; a(35,30)=1; a(35,34)=2; a(35,40)=1; b(35)=c; %node(36) a(36,36)=Tb; b(36)=0; %node(37) a(37,37)=-4; a(37,32)=2; a(37,36)=1; a(37,38)=1; b(37)=c; %node(38) a(38,38)=-4; a(38,33)=2; a(38,37)=1; a(38,39)=1; b(38)=c; %node(39) a(39,39)=-4; a(39,34)=2; a(39,38)=1; a(39,40)=1; b(39)=c; %node(40) a(40,40)=-4; a(40,35)=2; a(40,39)=2; b(40)=c; T=a\b; fprintf(' Forcing Function Vector \n ') b(:,1) fprintf(' NODE TEMPERATURE (K) \n ') TSolution=T(:,1); contourf(T) for i=1:length(TSolution) fprintf(' %4.0f \t \t %6.1f \n',i,TSolution(i)) end

 Tags conduction, convection, diffusion, heat transfer, matlab

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post Sandra H. OpenFOAM 1 March 3, 2010 09:02 richard CFX 3 March 24, 2008 08:27 Nepal CFX 7 May 31, 2005 11:51 Mark CFX 6 November 15, 2004 16:55 Dieter Fauconnier FLUENT 0 October 7, 2004 08:22

All times are GMT -4. The time now is 02:23.