# Time step dependence of convergence behavior of steady state simulations in CFX

 Register Blogs Members List Search Today's Posts Mark Forums Read

 April 21, 2011, 05:43 Time step dependence of convergence behavior of steady state simulations in CFX #1 Senior Member   Join Date: Oct 2010 Location: Zurich Posts: 176 Rep Power: 6 I am simulating steady state turbulent conjugate heat transfer problem in CFX. I am facing some convergence problems (residuals stabilize before reaching convergence criteria). I have gone through the FAQ regarding this available under CFD wiki ( http://www.cfd-online.com/Wiki/Ansys...gence_criteria) and tried to play with the time-step being used by the CFX solver. Now I observe the following 1) With Automatic Timestep calculation, I am able to get convergence for my simulations if I reduce the Timescale factor to 0.1. So whatever automatic time-step is calculated by solver, I multiply it with 0.1. 2) I tried to get an idea of the physical time-step by plotting streamlines and observing the time variable on the streamlines (as outlined in the CFD wiki link above). However, the flow is very complex consisting of 3-dimensional vortices and the physical time estimate from streamlines is very large. And choosing a time-step based on a fraction (1/3 to 1/5) of this physical time leads to a large time-step and solver failure 3) Choosing the local timescale factor of 4 leads to very slow convergence. I have asked similar question before on this forum. However, I have come back as I am not sure what I am doing is right. My question is: a) Is it fine to get convergence by such large reduction (1/10) in the automatically calculated time step? I have repeatedly checked my mesh and set-up and I have not been able to find any problem with that. I have also checked that I am not resolving any transient behavior in my simulation because the period of oscillation of residual changes with change in time-step. b) The transient formulation being used in CFX for steady state simulation is fully implicit (correct me if I am wrong). Then why does the convergence behavior depend on choice of time-step? Isn't a fully implicit discretization unconditionally stable? c) moreover, why should attainment of steady state depend on choice of time-step? Theoretically one can use as large a time-step as desired.

 April 25, 2011, 07:25 #2 Senior Member   Join Date: Oct 2010 Location: Zurich Posts: 176 Rep Power: 6 Anyone please...

 April 25, 2011, 07:52 #3 New Member   Florent Duchaine Join Date: Jan 2011 Location: Toulouse, France Posts: 25 Rep Power: 6 what is your configuration?

 April 28, 2011, 18:39 #4 Super Moderator   Glenn Horrocks Join Date: Mar 2009 Location: Sydney, Australia Posts: 10,672 Rep Power: 84 a) You can use any time step you like to get convergence. A larger timestep will usually get there quicker, that is why it is recommended. b) Yes, CFX is fully implicit (although there are some physics models which are not, such as surface tension and particle tracking, but that is another matter). The importance of time step size is that is what CFX uses to stabilise the equations. A SIMPLE based solver uses under relaxation factors. CFX uses time step size. c) Just as for under relaxation (URF) on SIMPLE based solvers, you want to use the largest URF which converges reliably. Then you often reduce it a bit for safety. Likewise in CFX you use the largest timestep which converges. As you approach convergence the equations often become more stable, meaning that you can increase the timestep size. This means it is very common to start a CFX steady state run with a small timestep and run that for a few iterations to set the flow up, but then start increasing the time step size as the flow settles down. As you approach convergence you can often be running time steps 100 or 1000 times larger than you started with. Use the "Edit run in progress" feature of the sovler manager and you can do this without stopping and restarting the run. Far, ftab, 86682164 and 2 others like this.

May 3, 2011, 12:53
#5
Senior Member

Join Date: Oct 2010
Location: Zurich
Posts: 176
Rep Power: 6
Quote:
 Originally Posted by ghorrocks This means it is very common to start a CFX steady state run with a small timestep and run that for a few iterations to set the flow up, but then start increasing the time step size as the flow settles down. As you approach convergence you can often be running time steps 100 or 1000 times larger than you started with. Use the "Edit run in progress" feature of the sovler manager and you can do this without stopping and restarting the run.
Thanks Glen again for the detailed reply. It clarified a lot.
I have one query here. In my simulations, I find that convergence stalls and when I reduce the timestep, it goes towards convergence. But when I reach near convergence I have to keep the time step small until the convergence is reached.
This is because in one of the simulations I tried the following:
1. I first got a solution with reduced time-step.
2. Then used this as initial condition with a larger time-step. The residuals actually went up and stabilized at the higher level (inside the red circle)! Does this point to some error in problem setup?
Attached Images
 momentum_residuals_komega.jpg (36.6 KB, 393 views)

December 23, 2013, 06:31
convergence problem
#6
New Member

Bitte56
Join Date: Mar 2013
Location: India
Posts: 15
Rep Power: 4
[QUOTE=ghorrocks;305513]a) You can use any time step you like to get convergence. A larger timestep will usually get there quicker, that is why it is recommended.

b) Yes, CFX is fully implicit (although there are some physics models which are not, such as surface tension and particle tracking, but that is another matter). The importance of time step size is that is what CFX uses to stabilise the equations. A SIMPLE based solver uses under relaxation factors. CFX uses time step size.

c) Just as for under relaxation (URF) on SIMPLE based solvers, you want to use the largest URF which converges reliably. Then you often reduce it a bit for safety. Likewise in CFX you use the largest timestep which converges. As you approach convergence the equations often become more stable, meaning that you can increase the timestep size.

This means it is very common to start a CFX steady state run with a small timestep and run that for a few iterations to set the flow up, but then start increasing the time step size as the flow settles down. As you approach convergence you can often be running time steps 100 or 1000 times larger than you started with. Use the "Edit run in progress" feature of the sovler manager and you can do this without stopping and restarting the run.[/ Sir, I am also having the convergence problem. I have attached image here. When i reduced time step, residuals actually went up. why? ]
Attached Images
 prob2.jpg (104.0 KB, 144 views)

 Tags cfx, convergence stall, steady state, time step

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post Niklas Wikstrom (Wikstrom) OpenFOAM Running, Solving & CFD 122 June 15, 2014 06:20 xiuying OpenFOAM Running, Solving & CFD 8 August 27, 2013 15:33 payam_IUST FLUENT 1 October 12, 2009 08:19 Kushagra CFX 1 June 22, 2008 19:06 Vanessa CFX 2 June 21, 2006 09:18

All times are GMT -4. The time now is 04:12.