CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Main CFD Forum

lid-driven cavity in matlab using BiCGStab

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   January 19, 2012, 15:59
Default lid-driven cavity in matlab using BiCGStab
  #1
New Member
 
Felix Apel
Join Date: Sep 2009
Posts: 15
Rep Power: 7
Don456 is on a distinguished road
Hi,

I'm working on the lid driven cavity problem and found a matlab code in the forum which works. My aim is to implement this code in java (allredy done without SIP solver) and use BiCGStab/CG to solve the matrix systems. The main interesting point is, that I have ported both mentioned solvers to run on the GPU. Speedup so far is around 5 (compared to one CPU core).
My problem now is, that I have to transfer the coeffs in the program to a matrix to solve the equation system. For the impuls equation it works fine but the pressure equation is not solved as it should. Has somebody an idea how to solve my problem?

Thinks in advance
Felix

Here is the code:

Code:
%%% pcolm - a simplified version of pcol.f code (Peric, 1997)
%%%
%%% This version is writen for matlab.
%%%
%%% Gabriel Usera - Feb/2007
%%%
%%% This version is setup for Lid-Driven Cavity flow.
%%%
%%% To set up other flows B.C. require modification.
%%%
%%% Typical user input is covered in lines 43 to 90,
%%% including all numerical parameters, fluid properties
%%% and grid specification (lines 89 and 90).
%%%
%%% Boundary Conditions are specified in lines :
%%% 126 - Initial B.C. setup for Velocity
%%% 288-332 - Complete B.C. for Velocity
%%% 431-435 - B.C. for mass balance/pressure equation
%%%
%%% Please keep this version 'as it is' and rename
%%% the versions that you modify ('poclm9538.m' or
%%% something like that).
%%%
%%% To run :
%%% >> [X,Y,XC,YC,FX,FY,U,V,P,F1,F2]=pcolm;
%%%
%%% To plot :
%%% >> plotm;
%%%
%%%
function [X,Y,XC,YC,FX,FY,U,V,P,F1,F2]=pcolm;
global LTIME LTEST % Logic variables, Steady/Transient and Testing
global IPR JPR IU IV IP % (IPR,JPR) Pressure reference. IU,IV,IP Equation tags.
global NI NJ NIM NJM NIJ LI % Domain dimensions and indexing vector LI=(I-1)*NJ
global X Y XC YC FX FY % Domain coordinates and interpolation factors
global DENSIT VISC GDS DT DTR SMALL ALFA ULID % Fluid properties, Blending factor, Time step,...
global U V P PP F1 F2 DPX DPY U0 V0 % Variables: velocities, pressure, mass flux, pressure gradient...
global AE AW AS AN AP APR SU SV % Coefficient matrices
global SOR URF NSW RESOR % Iteration control parameters
%%% INPUT DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%
ITIM=0; % Set iteration counter to 0
TIME=0.; % Set initial time to 0.
%
LTEST=0; % Logic Flag : Testing ? LTEST=1, otherwise LTEST=0.
LTIME=0; % Logic Flag : Stationary (0) or Transient (1) ?
%
MAXIT=10; % Maximum number of outer iterations in each time step
IMON=2; % Index (I) for monitoring location
JMON=2; % Index (J) for monitoring location
IPR=2; % Index (I) for pressure reference point
JPR=2; % Index (J) for pressure reference point
SORMAX=1e-4; % Residual level for stopping outer iterations
SLARGE=1e+3; % Residual level for divergence
ALFA=0.92; % Parameter for linear solver SIPSOL
%
DENSIT=1.0; % Fluid density
VISC= 1.e-2; % Fluid viscosity
ULID= 1.; % Lid velcity for lid driven cavity
%
UIN=0.; % Initial value for U velocity (usually 0.)
VIN=0.; % Initial value for V velocity (usually 0.)
PIN=0.; % Initial valur for Pressure (usually 0.)
%
ITST=10; % Number of time steps (1 for steady flow, LTIME=0)
DT=0.1; % Time step in seconds (meaningless for steady flow)
%
IU=1; % Tag for U equation
IV=2; % Tag for V equation
IP=3; % Tag for P equation
%
URF(IU)=0.8; % Under relaxation parameter for U
URF(IV)=0.8; % Under relaxation parameter for V
URF(IP)=0.2; % Under relaxation parameter for P
%
SOR(IU)=0.2; % Ratio of residual reduction for linear solver : U
SOR(IV)=0.2; % Ratio of residual reduction for linear solver : V
SOR(IP)=0.2; % Ratio of residual reduction for linear solver : P
%
NSW(IU)=1; % Maximum number of linear solver iterations : U
NSW(IV)=1; % Maximum number of linear solver iterations : V
NSW(IP)=6; % Maximum number of linear solver iterations : P
%
GDS=1.0; % UDS - CDS Blending for U,V
%
%%% GRID DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%
X=[0:.5:1,1]'; % X - cell volume coordinates (only tested uniform spacing)
Y=[0:.5:1,1]'; % Y - cell volume coordinates (only tested uniform spacing)
%
NI=length(X); % Number of points in X ( + 1 )
NJ=length(Y); % Number of points in Y ( + 1 )
NIM=NI-1; % NI - 1
NJM=NJ-1; % NJ - 1
NIJ=NI*NJ; % Total number of points 
%%% Indexing vector for k=(i-1)*NJ+j indexing style
LI=([1:NI]-1)*NJ; % 
%%% X cell center coordinate
XC=X; XC(2:NIM)=0.5*(X(1:NIM-1)+X(2:NIM));
%%% Y cell center coordinate
YC=Y; YC(2:NJM)=0.5*(Y(1:NJM-1)+Y(2:NJM));
%%% Interpolation factors (in uniform grid FX=FY=0.5 except at boundaries)
FX(1:NIM)=(X(1:NIM)-XC(1:NIM))./(XC(2:NI)-XC(1:NIM)); FX(NI)=0.;
FY(1:NJM)=(Y(1:NJM)-YC(1:NJM))./(YC(2:NJ)-YC(1:NJM)); FY(NJ)=0.;
%%% SET SOME CONTROL VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SMALL=1.e-15; % Small number
GREAT=1.e+15; % Big number
DTR=1./DT; % Reciprocal of time step
RESOR=zeros(3,1); % Initialize array to store residuals

A=zeros(NIJ,NIJ);

%%% Monitoring location
IJMON=LI(IMON)+JMON;
%%% INITIALIZE FIELDS and ARRAYS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[U,V,P,PP,U0,V0,F1,F2,DPX,DPY]=deal(zeros(NIJ,1));
[AP,AE,AW,AN,AS,APR,SU,SV]=deal(zeros(NIJ,1));
%%% FIXED BOUNDARY AND INITIAL CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% North wall velocity
for I=2:NIM, U(LI(I)+NJ)=ULID; end;
%%% Intial conditions
for I=2:NIM,
for IJ=LI(I)+2:LI(I)+NJM,
U(IJ)=UIN;
V(IJ)=VIN;
P(IJ)=PIN;
U0(IJ)=UIN;
V0(IJ)=VIN;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%% TIME LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
ITIMS=ITIM+1; % Update iteration counter to first iteration
ITIME=ITIM+ITST; % Final number of iterations
%
for ITIM=ITIMS:ITIME, % Set time loop
TIME=TIME+DT; % Update time
%
if LTIME, U0=U; V0=V; end; % Shift solutions in time
%
%%% HEADDING FOR THIS TIME STEP
disp([' ']);
disp(['************************************************* *************']);
disp(['TIME=',num2str(TIME,'%0.2E%')]);
disp([' ']);
disp(['IT.--RES(U)----RES(V)----RES(P)-----UMON-----VMON-----PMON----']);
%
%
%%% OUTER ITERATIONS LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ITER=1:MAXIT
CALCUV; % Call CALCUV routine to update U and V
CALCP; % Call CALCP routine to update P,F1,F2 and U,V again
%
% Display information about residuals and monitor point values
disp([num2str(ITER),' ',num2str(RESOR(IU),'%0.2E'),' ',num2str(RESOR(IV),'%0.2e'),...
' ',num2str(RESOR(IP),'%0.2e'),' ',num2str(U(IJMON) ,'%0.2e'),...
' ',num2str(V(IJMON) ,'%0.2e'),' ',num2str(P(IJMON) ,'%0.2e')]);
%
% Check convergence
SOURCE=max(RESOR([IU,IV,IP]));
if SOURCE>SLARGE, break; end;
if SOURCE<SORMAX, break; end;
end;
%
% Return/Break if DIVERGING
if SOURCE>SLARGE, disp('DIVERGING'); return; end;
end;
%
disp([' ']);
disp(['CALCULATION FINISHED - SEE RESULTS IN [X,Y,XC,YC,FX,FY,U,V,P,F1,F2]']);
%
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
function CALCUV
global LTIME LTEST
global IPR JPR IU IV IP
global NI NJ NIM NJM NIJ LI
global X Y XC YC FX FY
global DENSIT VISC GDS DT DTR SMALL ALFA ULID
global U V P PP F1 F2 DPX DPY U0 V0
global AE AW AS AN AP APR SU SV
global SOR URF NSW RESOR
%%% INITIALIZE COEFFICIENTS AND SOURCE TERMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[AP,AE,AW,AN,AS,SU,SV,APR]=deal(zeros(NIJ,1));
A=zeros(NIJ,NIJ);
%%% FLUXES THROUGH INTERNAL EAST CV FACES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM-1,
FXE=FX(I); % Interpolation Factor
FXP=1.-FXE; %
DXPE=XC(I+1)-XC(I); % Distance P->E
%
for J=2:NJM,
IJ=LI(I)+J; % Index IJ to P
IJE=IJ+NJ; % Index IJE to E
%
S=Y(J)-Y(J-1); % Cell face 'area'
D=VISC*S/DXPE; % Coefficient for diffusive flux
%
CE=min(F1(IJ),0.); % Mass fluxes, upwind from E
CP=max(F1(IJ),0.); % Mass fluxes, upwind from P
%
FUUDS=CP*U(IJ)+CE*U(IJE); % Explicit convective fluxes UDS, U
FVUDS=CP*V(IJ)+CE*V(IJE); % Explicit convective fluxes UDS, V
FUCDS=F1(IJ)*(U(IJE)*FXE+U(IJ)*FXP); % Explicit convective fluxes CDS, U
FVCDS=F1(IJ)*(V(IJE)*FXE+V(IJ)*FXP); % Explicit convective fluxes CDS, V 
%
AE(IJ )=+CE-D; % Coefficient for E in P
AW(IJE)=-CP-D; % Coefficient for W in E

A(IJ,IJE)=AE(IJ);
A(IJE,IJ)=AW(IJE);

%
SU(IJ )=SU(IJ )+GDS*(FUUDS-FUCDS); % Source term for P, U
SU(IJE)=SU(IJE)-GDS*(FUUDS-FUCDS); % Source term for E, U
SV(IJ )=SV(IJ )+GDS*(FVUDS-FVCDS); % Source term for P, V
SV(IJE)=SV(IJE)-GDS*(FVUDS-FVCDS); % Source term for E, V
end;
end;
%%% FLUXES THROUGH INTERNAL NORTH CV FACES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for J=2:NJM-1,
FYN=FY(J); % Interpolation Factor
FYP=1.-FYN; %
DYPN=YC(J+1)-YC(J); % Distance P->N
%
for I=2:NIM,
IJ=LI(I)+J; % Index IJ to P
IJN=IJ+1; % Index IJN to N
%
S=X(I)-X(I-1); % Cell face 'area'
D=VISC*S/DYPN; % Coefficient for diffusive flux
%
CN=min(F2(IJ),0.); % Mass fluxes, upwind from E
CP=max(F2(IJ),0.); % Mass fluxes, upwind from P
%
FUUDS=CP*U(IJ)+CN*U(IJN); % Explicit convective fluxes UDS, U
FVUDS=CP*V(IJ)+CN*V(IJN); % Explicit convective fluxes UDS, V
FUCDS=F2(IJ)*(U(IJN)*FYN+U(IJ)*FYP); % Explicit convective fluxes CDS, U
FVCDS=F2(IJ)*(V(IJN)*FYN+V(IJ)*FYP); % Explicit convective fluxes CDS, V 
%
AN(IJ )=+CN-D; % Coefficient for E
AS(IJN)=-CP-D; % Coefficient for W

A(IJ,IJN)=AN(IJ);
A(IJN,IJ)=AS(IJN);

%
SU(IJ )=SU(IJ )+GDS*(FUUDS-FUCDS); % Source term for P, U
SU(IJN)=SU(IJN)-GDS*(FUUDS-FUCDS); % Source term for N, U
SV(IJ )=SV(IJ )+GDS*(FVUDS-FVCDS); % Source term for P, V
SV(IJN)=SV(IJN)-GDS*(FVUDS-FVCDS); % Source term for N, V 
end;
end;

%%% VOLUME INTEGRALS (SOURCE TERMS) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM, % Loop I direction
DX=X(I)-X(I-1); % Cell length
for J=2:NJM, % Loop J direction
DY=Y(J)-Y(J-1); % Cell heigth
VOL=DX*DY; % Cell Volume
IJ=LI(I)+J; % IJ index to P
%
PE=P(IJ+NJ)*FX(I )+P(IJ )*(1.-FX(I )); % Pressure at 'e'
PW=P(IJ )*FX(I-1)+P(IJ-NJ)*(1.-FX(I-1)); % Pressure at 'w'
PN=P(IJ+ 1)*FY(J )+P(IJ )*(1.-FY(J )); % Pressure at 'n'
PS=P(IJ )*FY(J-1)+P(IJ- 1)*(1.-FY(J-1)); % Pressure at 's'
DPX(IJ)=(PE-PW)/DX; % Pressure X-gradient
DPY(IJ)=(PN-PS)/DY; % Pressure Y-gradient
SU(IJ)=SU(IJ)-DPX(IJ)*VOL; % Pressure term - U
SV(IJ)=SV(IJ)-DPY(IJ)*VOL; % Pressure term - V
%
if LTIME, % Unsteady ?
APT=DENSIT*VOL*DTR; % Coefficient
SU(IJ)=SU(IJ)+APT*U0(IJ); % Source term - U
SV(IJ)=SV(IJ)+APT*V0(IJ); % Source term - V
AP(IJ)=AP(IJ)+APT; % AP Coef.
end;
end;
end;
%%% BOUNDARY CONDITIONS U,V %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SOUTH BOUNDARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%
for I=2:NIM, % Loop I direction
IJ=LI(I)+2; IJB=IJ-1; % IJ,IJB to South Boundary (J=2)
U(IJB)=0.; % Set South wall U velocity
V(IJB)=0.; % Set South wall V velocity
D=VISC*(X(I)-X(I-1))/(YC(2)-YC(1)); % Diffusion coef.
AP(IJ)=AP(IJ)+D; % Coef for P
SU(IJ)=SU(IJ)+D*U(IJB); % Sourec term - U
SV(IJ)=SV(IJ)+D*V(IJB); % Sourec term - V 
end;
%%% NORTH BOUNDARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%
for I=2:NIM,
IJ=LI(I)+NJM; IJB=IJ+1;
U(IJB)=ULID; 
V(IJB)=0.;
D=VISC*(X(I)-X(I-1))/(YC(NJ)-YC(NJM));
AP(IJ)=AP(IJ)+D;
SU(IJ)=SU(IJ)+D*U(IJB);
SV(IJ)=SV(IJ)+D*V(IJB); 
end;
%%% WEST BOUNDARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%
for J=2:NJM,
IJ=LI(2)+J; IJB=IJ-NJ;
U(IJB)=0.;
V(IJB)=0.;
D=VISC*(Y(J)-Y(J-1))/(XC(2)-XC(1));
AP(IJ)=AP(IJ)+D;
SU(IJ)=SU(IJ)+D*U(IJB); 
SV(IJ)=SV(IJ)+D*V(IJB);
end;

%%% EAST BOUNDARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%
for J=2:NJM,
IJ=LI(NIM)+J; IJB=IJ+NJ;
U(IJB)=0.;
V(IJB)=0.;
D=VISC*(Y(J)-Y(J-1))/(XC(NI)-XC(NIM));
AP(IJ)=AP(IJ)+D;
SU(IJ)=SU(IJ)+D*U(IJB); 
SV(IJ)=SV(IJ)+D*V(IJB);
end;
%%% SOLVE EQUATIONS FOR U AND V %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%% UNDER RELAXATION, SOLVING FOR U-VELOCITY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM,
for IJ=LI(I)+2:LI(I)+NJM,
APR(IJ)=AP(IJ);
AP(IJ)=(APR(IJ)-AE(IJ)-AW(IJ)-AN(IJ)-AS(IJ))/URF(IU);

A(IJ,IJ)=AP(IJ);

SU(IJ)=SU(IJ)+(1.-URF(IU))*AP(IJ)*U(IJ);
end;
end;
%%% SOLVE for U
U2=SIPSOL(U,IU);
U=Bicgstab(A,SU,1e-4,1000,U);
%%% UNDER RELAXATION, SOLVING FOR V-VELOCITY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM,
for IJ=LI(I)+2:LI(I)+NJM,
AP(IJ)=(APR(IJ)-AE(IJ)-AW(IJ)-AN(IJ)-AS(IJ))/URF(IV);
SU(IJ)=SV(IJ)+(1.-URF(IV))*AP(IJ)*V(IJ);
APR(IJ)=1./AP(IJ);
end;
end;
%%% SOLVE for V
V2=SIPSOL(V,IV);
V=Bicgstab(A,SU,1e-4,1000,V);
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

function CALCP;
global LTIME LTEST
global IPR JPR IU IV IP
global NI NJ NIM NJM NIJ LI
global X Y XC YC FX FY
global DENSIT VISC GDS DT DTR SMALL ALFA ULID
global U V P PP F1 F2 DPX DPY U0 V0
global AE AW AS AN AP APR SU SV
global SOR URF NSW RESOR
%%% INITIALIZE COEFFICIENTS AND SOURCE TERMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[AP,AE,AW,AN,AS,SU]=deal(zeros(NIJ,1));
A=zeros(NIJ,NIJ);
%%% EAST CV FACES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%
for I=2:NIM-1, % Loop I direction
DXPE=XC(I+1)-XC(I); % Distance P->E
FXE=FX(I); % Interpolation factor
FXP=1.-FXE; % Interpolation factor
%
for J=2:NJM, % Loop J direction
IJ=LI(I)+J; % Index IJ to P
IJE=IJ+NJ; % Index IJE to E
S=Y(J)-Y(J-1); % Cell face 'area'
VOLE=DXPE*S; % Volume between P and E
D=DENSIT*S; % Coefficient
%
DPXEL=0.5*(DPX(IJE)+DPX(IJ)); % Interpolated gradient in 'e'
UEL=U(IJE)*FXE+U(IJ)*FXP; % Interpolated U-velocity in 'e'
APUE=APR(IJE)*FXE+APR(IJ)*FXP; % Interpolated 1/AP coeff. in 'e'
%
DPXE=(P(IJE)-P(IJ))/DXPE; % Gradient in 'e', compact aprox.
UE=UEL-APUE*VOLE*(DPXE-DPXEL); % Corrected U velocity in 'e'
F1(IJ)=D*UE; % Mass flux through 'e' face
%
AE(IJ)=-D*APUE*S; % Coefficient for E in P
AW(IJE)=AE(IJ); % Coefficient for W in E

A(IJ,IJE)=AE(IJ);
A(IJE,IJ)=AW(IJE);

end;
end;
%%% NORTH CV FACES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%
for J=2:NJM-1, % Loop J direction
DYPN=YC(J+1)-YC(J); % Distance P->N
FYN=FY(J); % Interpolation factor
FYP=1.-FYN; % Interpolation factor
%
for I=2:NIM, % Loop I direction
IJ=LI(I)+J; % Index IJ to P
IJN=IJ+1; % Index IJN to N
S=X(I)-X(I-1); % Cell face 'area'
VOLN=DYPN*S; % Volume between P and N
D=DENSIT*S; % Coefficient
%
DPYNL=0.5*(DPY(IJN)+DPY(IJ)); % Interpolated gradient in 'n'
VNL=V(IJN)*FYN+V(IJ)*FYP; % Interpolated V-velocity in 'n'
APVN=APR(IJN)*FYN+APR(IJ)*FYP; % Interpolated 1/AP coeff. in 'n'
%
DPYN=(P(IJN)-P(IJ))/DYPN; % Gradient in 'n', compact aprox.
VN=VNL-APVN*VOLN*(DPYN-DPYNL); % Corrected V velocity in 'n'
F2(IJ)=D*VN; % Mass flux through 'n' face
%
AN(IJ)=-D*APVN*S; % Coefficient for N in P
AS(IJN)=AN(IJ); % Coefficient for S in N

A(IJ,IJN)=AN(IJ);
A(IJN,IJ)=AS(IJN);

end;
end;
%%% SINCE ALL BOUNDARIES ARE ZERO MASS FLUX BOUNDARIES (WALLS), %%%%%
%%% WE HAVE NEWMANN BOUNDARY CONDITIONS FOR PRESSURE CORRECTION %%%%%
%%% (NULL GRADIENT). NO SPECIAL TREATMEN IS REQUIRED. %%%%%
%%% FOR THE CASE OF INLETS AND OUTLETS, MASS FLUXES AT THE BOUNDARIES %%%%%
%%% NEED TO BE COMPUTED HERE. %%%%%
%%% SOURCE TERM AND COEFFICIENT FOR NODE P %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SUM=0.; % Initialize SUM
for I=2:NIM, % Loop I direction
for IJ=LI(I)+2:LI(I)+NJM, % Loop J direction
SU(IJ)=F1(IJ-NJ)-F1(IJ)+F2(IJ-1)-F2(IJ); % Flux imbalance
AP(IJ)=-(AE(IJ)+AW(IJ)+AN(IJ)+AS(IJ)); % Coefficient for P

A(IJ,IJ)=AP(IJ);

SUM=SUM+SU(IJ); % Global flux imbalance
PP(IJ)=0.; % Initialize PP
end;
end;
if LTEST, disp(['SUM=',num2str(SUM)]); end; % If testing display SUM
%%% solve for PP
PP0=PP;
PP=SIPSOL(PP,IP);
PP2=Bicgstab(A,SU,1e-4,1000,PP0);
%PP=KonjugGrad(A,SU,1e-4,1000,PP0);
%%% EXTRAPOLATE BOUNDARY VALUES FOR PP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SOUTH AND NORTH BOUNDARIES
for I=2:NIM,
IJ=LI(I)+1;
PP(IJ)=PP(IJ+1)+(PP(IJ+1)-PP(IJ+2))*FY(2);
IJ=LI(I)+NJ;
PP(IJ)=PP(IJ-1)+(PP(IJ-1)-PP(IJ-2))*(1.-FY(NJM-1));
end;
%%% WEST AND EAST BOUNDARIES
NJ2=2*NJ;
for J=2:NJM,
IJ=LI(1)+J;
PP(IJ)=PP(IJ+NJ)+(PP(IJ+NJ)-PP(IJ+NJ2))*FX(2);
IJ=LI(NI)+J;
PP(IJ)=PP(IJ-NJ)+(PP(IJ-NJ)-PP(IJ-NJ2))*(1.-FX(NIM-1));
end;
%%% REFERENCE PRESSURE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%
IJPREF=LI(IPR)+JPR;
PP0=PP(IJPREF);
%%% CORRECT EAST MASS FLUXES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM-1
for IJ=LI(I)+2:LI(I)+NJM,
F1(IJ)=F1(IJ)+AE(IJ)*(PP(IJ+NJ)-PP(IJ));
end;
end;
%%% CORRECT NORTH MASS FLUXES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM
for IJ=LI(I)+2:LI(I)+NJM-1,
F2(IJ)=F2(IJ)+AN(IJ)*(PP(IJ+1)-PP(IJ));
end;
end;
%%% CORRECT PRESSURE AND VELOCITIES AT CELL CENTER %%%%%%%%%%%%%%%%%%%%%%%%
for I=2:NIM,
DX=X(I)-X(I-1); 
%
for J=2:NJM,
IJ=LI(I)+J;
DY=Y(J)-Y(J-1);
%
PPE=PP(IJ+NJ)*FX(I )+PP(IJ )*(1.-FX(I )); % Pressure at 'e'
PPW=PP(IJ )*FX(I-1)+PP(IJ-NJ)*(1.-FX(I-1)); % Pressure at 'w'
PPN=PP(IJ+1 )*FY(J )+PP(IJ )*(1.-FY(J )); % Pressure at 'n'
PPS=PP(IJ )*FY(J-1)+PP(IJ-1 )*(1.-FY(J-1)); % Pressure at 's'
%
U(IJ)=U(IJ)-(PPE-PPW)*DY*APR(IJ); % U-velocity corrected
V(IJ)=V(IJ)-(PPN-PPS)*DX*APR(IJ); % V-velocity corrected
P(IJ)=P(IJ)+URF(IP)*(PP(IJ)-PP0); % Pressure corrected
end;
end;
%%% EXTRAPOLATE BOUNDARY VALUES FOR P %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SOUTH AND NORTH BOUNDARIES
for I=2:NIM,
IJ=LI(I)+1;
P(IJ)=P(IJ+1)+(P(IJ+1)-P(IJ+2))*FY(2);
IJ=LI(I)+NJ;
P(IJ)=P(IJ-1)+(P(IJ-1)-P(IJ-2))*(1.-FY(NJM-1));
end;
%%% WEST AND EAST BOUNDARIES
NJ2=2*NJ;
for J=2:NJM,
IJ=LI(1)+J;
P(IJ)=P(IJ+NJ)+(P(IJ+NJ)-P(IJ+NJ2))*FX(2);
IJ=LI(NI)+J;
P(IJ)=P(IJ-NJ)+(P(IJ-NJ)-P(IJ-NJ2))*(1.-FX(NIM-1));
end;
return;
Don456 is offline   Reply With Quote

Old   January 19, 2012, 16:00
Default
  #2
New Member
 
Felix Apel
Join Date: Sep 2009
Posts: 15
Rep Power: 7
Don456 is on a distinguished road
Rest of code:

Code:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
function FI=SIPSOL(FI,IFI);
global LTEST
global NI NJ NIM NJM NIJ LI
global SMALL ALFA
global AE AW AS AN AP SU
global SOR NSW RESOR
%%% INITIALIZE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%
[UE,UN,RES,LW,LS,LPR]=deal(zeros(NIJ,1));
%%% COEFFICIENTS OF UPPER AND LOWER TIRANGULAR MATRICES %%%%%%%%%%%%%%%%%%%
for I=2:NIM,
for IJ=LI(I)+2:LI(I)+NJM,
LW(IJ)=AW(IJ)/(1.+ALFA*UN(IJ-NJ));
LS(IJ)=AS(IJ)/(1.+ALFA*UE(IJ-1));
P1=ALFA*LW(IJ)*UN(IJ-NJ);
P2=ALFA*LS(IJ)*UE(IJ-1);
LPR(IJ)=1./(AP(IJ)+P1+P2-LW(IJ)*UE(IJ-NJ)-LS(IJ)*UN(IJ-1));
UN(IJ)=(AN(IJ)-P1)*LPR(IJ);
UE(IJ)=(AE(IJ)-P2)*LPR(IJ);
end;
end;
%%% INNER ITERATIONS LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for L=1:NSW(IFI),
RESL=0.;
%
%%% CALCULATE RESIDUAL AND OVERWRITE IT BY INTERMEDIATE VECTOR%%%%%%%%%
for I=2:NIM,
for IJ=LI(I)+2:LI(I)+NJM,
RES(IJ)=SU(IJ)-AN(IJ)*FI(IJ+1)-AS(IJ)*FI(IJ-1)-AE(IJ)*FI(IJ+NJ)...
-AW(IJ)*FI(IJ-NJ)-AP(IJ)*FI(IJ);
RESL=RESL+abs(RES(IJ));
RES(IJ)=(RES(IJ)-LS(IJ)*RES(IJ-1)-LW(IJ)*RES(IJ-NJ))*LPR(IJ);
end;
end;
%
%%% STORE INITIAL RESIDUAL SUM FOR CHECKING CONVERGENCE OF OUTER IT. %%
if L==1, RESOR(IFI)=RESL; end;
RSM=RESL/(RESOR(IFI)+SMALL);
%
%%% BACK SUBSTITUTION AND CORRECTION
for I=NIM:-1:2,
for IJ=LI(I)+NJM:-1:LI(I)+2,
RES(IJ)=RES(IJ)-UN(IJ)*RES(IJ+1)-UE(IJ)*RES(IJ+NJ);
FI(IJ)=FI(IJ)+RES(IJ);
end;
end;
%
%%% CHECK CONVERGENCE
if LTEST, disp([num2str(L),' INNER ITER., RESL=',num2str(RESL)]); end;
if RSM<SOR(IFI), return; end;
end;
%
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% Bicgstab: Verfahren der bikonjugierten Gradienten STABilized
% 
% Anwendungsbeispiele: Loese A*x=b;
%
% x =  Bicgstab(A,b);
% x =  Bicgstab(A,b,tol);
% x =  Bicgstab(A,b,tol,maxit);
% x =  Bicgstab(A,b,tol,maxit,x0);
%
function x = Bicgstab(A,b,tol,maxit,x0)
% 
% OUTPUT VARIABLEN:
% -----------------
% x: Loesungsvector 
% 
% INPUT VARIABLEN:
% ----------------
% A: quadratische n * n Matrix.
% b: rechte Seite.
% tol: [OPTIONAL] Toleranz. Default = 1e-6
% maxit: [OPTIONAL] Maximale Anzahl von Iterationen. Default = min(n,30)
% x0: [OPTIONAL] Startvector fuer Iteration. Default =  Nullvector

% CHECK THE INPUT ARGUMENTS
  if (nargin < 2)
    error('Funktion braucht mehr Parameter.');
  else
    [m,n] = size(A);
    if (m ~= n)
      error('Matrix ist nicht quadratisch.');
    end
    if ~isequal(size(b),[m,1])
      error('Rechte Seite hat nicht die richtige Dimension.');
    end
  end
  if (nargin < 3) | isempty(tol)
    tol = 1.0e-6;
  end
  if (nargin < 4) | isempty(maxit)
    maxit = min(n,30);
  end
  if (nargin < 5) | isempty(x0)
    x = zeros(n,1);
  else
    if ~isequal(size(x0),[n,1])
      error('Startvector x0 hat nicht die richtige Dimension.');
    end
    x = x0;
  end

% CHECK FOR TRIVIAL SOLUTION
  normb = norm(b);
  if (normb == 0)
    x = zeros(n,1);
    return
  end
%  
% MAIN ALGORITHM
%
  tolb = tol * normb;
  r0 = b - A * x;      
  r = r0;
  rr0 = r'*r0;
  p = r;
  % iterate
  for i = 1:maxit
    normr = norm(r);
    if (normr <= tolb)               
%     converged
      break
    end
    v = A*p;
    vr0 = v'*r0; 
    if(vr0 ==0)
      error('Bicgstab break-down.');
    end
    if(rr0 ==0)
      error('Bicgstab Loesung stagniert.');
    end
    alpha = rr0/vr0;
    s = r - alpha * v;
    t = A * s;
    ts = s'*t;
    tt = t'*t;
    if((tt ==0)||(ts==0))
      error('Bicgstab break-down.');
    end
    omega = ts/tt;
    x = x + alpha * p + omega * s;
    r = s - omega * t;
    r1r0 = r'*r0;
    beta = (alpha*r1r0)/(omega*rr0);
    p = r + beta * (p - omega * v);
    rr0 = r1r0;
  end
  normr = norm(b-A*x);
  if (normr > tolb)               
     warning('Verfahren hat nicht konvergiert')
  end
  return
Don456 is offline   Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Lid Driven Cavity velocity profiles new_at_this Main CFD Forum 0 December 22, 2011 17:04
finite volume method - lid driven cavity ainal Main CFD Forum 0 May 15, 2011 11:06
is there any parallel code for the famous Lid Driven Cavity flow? gholamghar Main CFD Forum 0 August 1, 2010 01:55
2D Lid Driven Cavity Flow simulation using MATLAB josephlm Main CFD Forum 3 June 24, 2010 01:58
Lid driven cavity flow KK FLUENT 1 December 16, 2009 19:10


All times are GMT -4. The time now is 03:20.