CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > OpenFOAM Native Meshers: snappyHexMesh and Others

snappyHexMesh - geometry does not appear in Mesh

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   October 14, 2015, 05:59
Default snappyHexMesh - geometry does not appear in Mesh
  #1
Member
 
Join Date: Sep 2015
Posts: 30
Rep Power: 2
czhongrong is on a distinguished road
Hi, I am new to this and having problems to form a mesh with a geometry inside the mesh domain. My geometry is a cylinder of diameter 0.06m, height of 1m. My domain is 2.5m(L) x 1.5m(W) x 1m(H). Cylinder is located in dead center of the domain box. Attached is a rough sketch.

Below are my blockMeshDict and snappyHexMeshDict. I've ran surfaceCheck on my STL and there is no problem with that.

Quote:
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.1.x |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 1;

vertices
(
(0 0 0) //0
(2.5 0 0) //1
(2.5 0 -1.5) //2
(0 0 -1.5) //3
(0 1 0) //4
(2.5 1 0) //5
(2.5 1 -1.5) //6
(0 1 -1.5) //7

);

blocks
(
hex (0 1 2 3 4 5 6 7) (30 20 20) simpleGrading (1 1 1)
);

patches
(
patch inlet
(
(0 3 7 4)
)
patch outlet
(
(1 2 6 5)
)
symmetryPlane lateral_front
(
(0 1 5 4)
)
symmetryPlane lateral_back
(
(2 6 7 3)
)
wall ground_wall
(
(0 1 2 3)
)
symmetryPlane upperWall
(
(4 5 6 7)
)
);

mergePatchPairs
(
);

// ************************************************** *********************** //
Quote:
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.1.x |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object snappyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers false;
//addLayers true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
box1
{
type searchableBox;
min (1.23 0 -0.79);
max (1.29 1 -0.73);
}

building.stl
{
type triSurfaceMesh;
name building;
}


};

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

// Refinement parameters
// ~~~~~~~~~~~~~~~~~~~~~

// If local number of cells is >= maxLocalCells on any processor
// switches from from refinement followed by balancing
// (current method) to (weighted) balancing before refinement.
maxLocalCells 100000;

// Overall cell limit (approximately). Refinement will stop immediately
// upon reaching this number so a refinement level might not complete.
// Note that this is the number of cells before removing the part which
// is not 'visible' from the keepPoint. The final number of cells might
// actually be a lot less.
maxGlobalCells 2000000;

// The surface refinement loop might spend lots of iterations refining just a
// few cells. This setting will cause refinement to stop if <= minimumRefine
// are selected for refinement. Note: it will at least do one iteration
// (unless the number of cells to refine is 0)
minRefinementCells 0;

// Allow a certain level of imbalance during refining
// (since balancing is quite expensive)
// Expressed as fraction of perfect balance (= overall number of cells /
// nProcs). 0=balance always.
maxLoadUnbalance 0.10;

// Number of buffer layers between different levels.
// 1 means normal 2:1 refinement restriction, larger means slower
// refinement.
nCellsBetweenLevels 1;

// Explicit feature edge refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies a level for any cell intersected by explicitly provided
// edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.
features
(
//{
// file "someLine.eMesh";
// level 2;
//}
);

// Surface based refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies two levels for every surface. The first is the minimum level,
// every cell intersecting a surface gets refined up to the minimum level.
// The second level is the maximum level. Cells that 'see' multiple
// intersections where the intersections make an
// angle > resolveFeatureAngle get refined up to the maximum level.

refinementSurfaces
{
building
{
// Surface-wise min and max refinement level
level (3 3);

// Optional specification of patch type (default is wall). No
// constraint types (cyclic, symmetry) etc. are allowed.
patchInfo
{
type wall;
}
}


}

resolveFeatureAngle 30;

// Region-wise refinement
// ~~~~~~~~~~~~~~~~~~~~~~

// Specifies refinement level for cells in relation to a surface. One of
// three modes
// - distance. 'levels' specifies per distance to the surface the
// wanted refinement level. The distances need to be specified in
// descending order.
// - inside. 'levels' is only one entry and only the level is used. All
// cells inside the surface get refined up to the level. The surface
// needs to be closed for this to be possible.
// - outside. Same but cells outside.

refinementRegions
{
box1
{
mode inside;
levels ((1.0 3));
}
}

// Mesh selection
// ~~~~~~~~~~~~~~

// After refinement patches get added for all refinementSurfaces and
// all cells intersecting the surfaces get put into these patches. The
// section reachable from the locationInMesh is kept.
// NOTE: This point should never be on a face, always inside a cell, even
// after refinement.
locationInMesh (1.2512 0.5995 -0.7512);

// Whether any faceZones (as specified in the refinementSurfaces)
// are only on the boundary of corresponding cellZones or also allow
// free-standing zone faces. Not used if there are no faceZones.
allowFreeStandingZoneFaces true;
}

// Settings for the snapping.
snapControls
{
//- Number of patch smoothing iterations before finding correspondence
// to surface
nSmoothPatch 3;

//- Maximum relative distance for points to be attracted by surface.
// True distance is this factor times local maximum edge length.
// Note: changed(corrected) w.r.t 17x! (17x used 2* tolerance)
tolerance 2.0;

//- Number of mesh displacement relaxation iterations.
nSolveIter 30;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;

//- Highly experimental and wip: number of feature edge snapping
// iterations. Leave out altogether to disable.
//nFeatureSnapIter 20;
}

// Settings for the layer addition.
addLayersControls
{
// Are the thickness parameters below relative to the undistorted
// size of the refined cell outside layer (true) or absolute sizes (false).
relativeSizes true;

// Per final patch (so not geometry!) the layer information
layers
{
ground_wall
{
nSurfaceLayers 2;

}
}

// Expansion factor for layer mesh
expansionRatio 1.0;

//- Wanted thickness of final added cell layer. If multiple layers
// is the
// thickness of the layer furthest away from the wall.
// Relative to undistorted size of cell outside layer.
// is the thickness of the layer furthest away from the wall.
// See relativeSizes parameter.
finalLayerThickness 0.5;

//- Minimum thickness of cell layer. If for any reason layer
// cannot be above minThickness do not add layer.
// See relativeSizes parameter.
minThickness 0.25;

//- If points get not extruded do nGrow layers of connected faces that are
// also not grown. This helps convergence of the layer addition process
// close to features.
// Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)
nGrow 0;

// Advanced settings

//- When not to extrude surface. 0 is flat surface, 90 is when two faces
// make straight angle.
featureAngle 60;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;

// Number of smoothing iterations of surface normals
nSmoothSurfaceNormals 1;

// Number of smoothing iterations of interior mesh movement direction
nSmoothNormals 3;

// Smooth layer thickness over surface patches
nSmoothThickness 10;

// Stop layer growth on highly warped cells
maxFaceThicknessRatio 0.5;

// Reduce layer growth where ratio thickness to medial
// distance is large
maxThicknessToMedialRatio 0.3;

// Angle used to pick up medial axis points
// Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x.
minMedianAxisAngle 90;

// Create buffer region for new layer terminations
nBufferCellsNoExtrude 0;

// Overall max number of layer addition iterations. The mesher will exit
// if it reaches this number of iterations; possibly with an illegal
// mesh.
nLayerIter 50;

// Max number of iterations after which relaxed meshQuality controls
// get used. Up to nRelaxIter it uses the settings in meshQualityControls,
// after nRelaxIter it uses the values in meshQualityControls::relaxed.
nRelaxedIter 20;

// Additional reporting: if there are just a few faces where there
// are mesh errors (after adding the layers) print their face centres.
// This helps in tracking down problematic mesh areas.
//additionalReporting true;
}

// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
meshQualityControls
{
//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 65;

//- Max skewness allowed. Set to <0 to disable.
maxBoundarySkewness 20;
maxInternalSkewness 4;

//- Max concaveness allowed. Is angle (in degrees) below which concavity
// is allowed. 0 is straight face, <0 would be convex face.
// Set to 180 to disable.
maxConcave 80;

//- Minimum pyramid volume. Is absolute volume of cell pyramid.
// Set to a sensible fraction of the smallest cell volume expected.
// Set to very negative number (e.g. -1E30) to disable.
minVol 1e-13;

//- Minimum quality of the tet formed by the face-centre
// and variable base point minimum decomposition triangles and
// the cell centre. This has to be a positive number for tracking
// to work. Set to very negative number (e.g. -1E30) to
// disable.
// <0 = inside out tet,
// 0 = flat tet
// 1 = regular tet
minTetQuality 1e-9;

//- Minimum face area. Set to <0 to disable.
minArea -1;

//- Minimum face twist. Set to <-1 to disable. dot product of face normal
//- and face centre triangles normal
minTwist 0.05;

//- minimum normalised cell determinant
//- 1 = hex, <= 0 = folded or flattened illegal cell
minDeterminant 0.001;

//- minFaceWeight (0 -> 0.5)
minFaceWeight 0.05;

//- minVolRatio (0 -> 1)
minVolRatio 0.01;

//must be >0 for Fluent compatibility
minTriangleTwist -1;

//- if >0 : preserve single cells with all points on the surface if the
// resulting volume after snapping (by approximation) is larger than
// minVolCollapseRatio times old volume (i.e. not collapsed to flat cell).
// If <0 : delete always.
//minVolCollapseRatio 0.5;

// Advanced

//- Number of error distribution iterations
nSmoothScale 4;
//- amount to scale back displacement at error points
errorReduction 0.75;

// Optional : some meshing phases allow usage of relaxed rules.
// See e.g. addLayersControls::nRelaxedIter.
relaxed
{
//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 75;
}
}

// Advanced

// Flags for optional output
// 0 : only write final meshes
// 1 : write intermediate meshes
// 2 : write volScalarFields with cellLevel and cell centres for postprocessing
// 4 : write current intersections as .obj files
debug 0;

// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;

// ************************************************** *********************** //
Attached Images
File Type: jpg Domain.jpg (84.3 KB, 13 views)

Last edited by czhongrong; October 15, 2015 at 02:08.
czhongrong is offline   Reply With Quote

Old   January 20, 2016, 06:26
Default
  #2
New Member
 
Cheng
Join Date: Nov 2015
Location: Germany
Posts: 10
Rep Power: 2
kanes is on a distinguished road
hey,

I have the same problem as you before. I have already solved it.
as my experiences, perhaps you can try to create a big enough block in your blockHexMeshDict.
or: make sure that your geometry in the .stl file and the block from the blockHexMeshDict are in the same direction in your coordinate and they have the same unit.

regards,
Cheng
kanes is offline   Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
No layers in a small gap bobburnquist OpenFOAM Native Meshers: snappyHexMesh and Others 6 August 26, 2015 09:38
snappyHexMesh - can't open mesh in ParaView tfigueiro OpenFOAM Paraview & paraFoam 0 June 11, 2015 19:05
[ANSYS Meshing] Meshing Strategy for inside geometry powpow ANSYS Meshing & Geometry 6 January 16, 2013 05:32
[ICEM] Copy geometry then copy mesh Anna Tian ANSYS Meshing & Geometry 0 July 30, 2012 16:59
snappyHexMesh won't work - zeros everywhere! sc298 OpenFOAM Native Meshers: snappyHexMesh and Others 2 March 27, 2011 21:11


All times are GMT -4. The time now is 15:37.