# Calculating divDevReff

 User Name Remember Me Password
 Register Blogs Members List Search Today's Posts Mark Forums Read

 LinkBack Thread Tools Display Modes
 December 11, 2008, 22:57 Hi All, I'm using simpleFoa #1 New Member   John O\'Sullivan Join Date: Mar 2009 Location: Auckland, New Zealand Posts: 7 Rep Power: 9 Hi All, I'm using simpleFoam and turbFoam with k-epsilon and will be trying different turbulence models in the future. Before that though, I'm trying to understand the implementation exactly. I've searched a lot and I don't understand why the calculation for turbulence->divDevReff(U) is: divDevReff(U) = - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*dev(fvc::grad(U)().T())) instead of: divDevReff(U) = - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*fvc::grad(U)().T()) ie. why do we take the deviatoric? I've read several papers including Hrvoje's "A tensorial approach to computational continuum mechanics using object-oriented techniques" and still haven't found an answer. Is there another paper that explains the implementation? Thanks very much John

 December 14, 2008, 18:48 Anyone? Or should I have been #2 New Member   John O\'Sullivan Join Date: Mar 2009 Location: Auckland, New Zealand Posts: 7 Rep Power: 9 Anyone? Or should I have been able to find this in the literature somewhere already?

 July 16, 2009, 16:59 #3 Senior Member     Louis Gagnon Join Date: Mar 2009 Location: Québec, QC, Canada Posts: 226 Rep Power: 10 Hi John, did you find the answer to that? If so I'd be curious to know what it is. Thanks! -Louis

 November 14, 2009, 14:09 #4 New Member   Join Date: Nov 2009 Posts: 12 Rep Power: 8 Hi, have you already found an answer to your question? I tried to understand this equation, too. But I failed!

 November 30, 2009, 23:04 #5 Senior Member     Louis Gagnon Join Date: Mar 2009 Location: Québec, QC, Canada Posts: 226 Rep Power: 10 I think it has to do with the fact that dev(fvc::grad(U)().T())) is, at convergence, the same as (fvc::grad(U)().T())) for some fluids -Louis

 December 2, 2009, 12:39 #6 New Member   Frank Albina Join Date: Mar 2009 Location: Switzerland Posts: 14 Rep Power: 9 fvc::div(nuEff()*dev(fvc::grad(U)().T())) and fvc::div(nuEff()*fvc::grad(U)().T()) are the same. The reason is that the missing term is the diagonal of the tensor fvc::grad(U)().T() which is the trace of fvc::grad(U)().T() which is div(phi). For an incompressible fluid, this value is strictly zero by virtue of mass conservation. Tushar@cfd, sharonyue and akionux like this.

December 22, 2009, 17:45
#7
Member

Matthew J. Churchfield
Join Date: Nov 2009
Location: Boulder, Colorado, USA
Posts: 49
Rep Power: 9
John,

I don't know if anyone has answered your question yet, but I've come across the same thing, and I have questions about the incompressible implementation of divDevReff also. As you said, in the incompressible models, turbulence->divDevReff(U) is:

- fvm::laplacian(nuEff(), U)
- fvc::div(nuEff()*dev(fvc::grad(U)().T()))

Shouldn't dev2 be used instead of dev? In the compressible models, that is the case as turbulence->divDevRhoReff is:

- fvm::laplacian(muEff(), U)
- fvc::div(muEff()*dev2(fvc::grad(U)().T()))

In src\OpenFOAM\primitives\Tensor\TensorI.H, dev and dev2 are defined as dev(A) = A-1/3*I*trace(A) and dev2(A) = A-2/3*I*trace(A).

The stress term in the incompressible momentum equation is as follows:
d/dx_j {nu_eff*[(du_i/dx_j + du_j/dx_i)-2/3*du_k/dx_k delta_ij]},

which is the same as:
d/dx_j {nu_eff*(du_i/dx_j+du_j/dx_i)} - 2/3*d/dx_i {nu_eff(du_k/dx_k)}

which is in vector notation:
laplacian(nu_eff*U)
+ div{nu_eff*transpose[grad(U)]}
- div{2/3*nu_eff*I*trace[transpose(grad(U))]}

and reduces to:
laplacian(nu_eff*U) + div{nu_eff*dev2(transpose[grad(U)])}

Notice that dev2 is here instead of dev, which agrees with the compressible coding. However, in the incompressible coding, dev is used, which seem incorrect.

Now, the du_k/dx_k = trace[transpose(grad(U))] should be equal to zero in incompressible flow due to the continuity equation, so it seems that it should not matter if dev or dev2 is used. However, in the PISO algorithm, velocity may be predicted from a field that does not satisfy continuity due to initial conditions or insufficient pressure correction, so it seems like it would be wise to keep du_k/dx_k.

I am wondering if dev2 is an addition to OpenFOAM 1.6 and the incompressible divDevReff (and divDevBeff for LES) didn't get updated to reflect the change. Can someone with the correct knowledge please help?

Thank you,

Matt

Quote:
 Originally Posted by jposunz Hi All, I'm using simpleFoam and turbFoam with k-epsilon and will be trying different turbulence models in the future. Before that though, I'm trying to understand the implementation exactly. I've searched a lot and I don't understand why the calculation for turbulence->divDevReff(U) is: divDevReff(U) = - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*dev(fvc::grad(U)().T())) instead of: divDevReff(U) = - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*fvc::grad(U)().T()) ie. why do we take the deviatoric? I've read several papers including Hrvoje's "A tensorial approach to computational continuum mechanics using object-oriented techniques" and still haven't found an answer. Is there another paper that explains the implementation? Thanks very much John

 January 2, 2010, 12:04 #8 New Member   Julien Christophe Join Date: Nov 2009 Posts: 4 Rep Power: 8 Hello, In fact, I've come across the same thing and I found the same conclusion than you Matthew... The reynolds stress tensor is defined as : -rho u'_i u'_j = 2 mu_t S_ij - 2/3 rho k delta_ij where k = (u'_i u'_i) /2 is the kinetic energy, and S_ij is the deviatoric part of the mean strain rate : S_ij = 1/2 (du_i/dx_j + du_j/dx_i) - 1/3 d_uk/dx_k delta_ij As you said Matthew, the stress term in the incompressible momentum equation is as follows: d/dx_j {nu_eff*[(du_i/dx_j + du_j/dx_i)-2/3*du_k/dx_k delta_ij]}, And in fact, from my point of view, a 2 is missing in the implementation of turbulence->divDevReff(U) of the incompressible model.... My other question is : Where the term "- 2/3 rho k delta_ij" of the Reynold stress is taken into account? Is it through a modified pressure defined as P = p/rho+2/3k and solved in the pressure equation? And then, what is writen in the output files? this modified pressure? If you have any idea.... Thank you in advance for your help, Julien galap, kiddmax, dongchao yang and 2 others like this.

August 25, 2010, 00:51
#9
New Member

pop
Join Date: Feb 2010
Posts: 11
Rep Power: 8
Hi,mchurchf.

The complete form of div(StressTensor)is:
div(muEff()*dev(fvc::grad(U)())) + div(muEff()*dev(fvc::grad(U)().T()))
So -1/3*I*trace(A) is lncluded in both dev(grad(U)) and dev(grad(U).T()),

in fact,
laplacian(nuEff(), U) = div(muEff()*grad(U)) =div(muEff()*dev(fvc::grad(U))) + 1/3*I*trace(A)

as a result, one 1/3*I*trace(A) is addded in laplacian(nuEff(), U), so a minus one must be subtracted in the later term.

then,dev2(A) = A-2/3*I*trace(A).

du_k/dx_k in incompressible fluids may be removed. If one retains it for correction, 1/3 or 2/3 is only a scale factor.

Quote:
 Originally Posted by mchurchf John, I don't know if anyone has answered your question yet, but I've come across the same thing, and I have questions about the incompressible implementation of divDevReff also. As you said, in the incompressible models, turbulence->divDevReff(U) is: - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*dev(fvc::grad(U)().T())) Shouldn't dev2 be used instead of dev? In the compressible models, that is the case as turbulence->divDevRhoReff is: - fvm::laplacian(muEff(), U) - fvc::div(muEff()*dev2(fvc::grad(U)().T())) In src\OpenFOAM\primitives\Tensor\TensorI.H, dev and dev2 are defined as dev(A) = A-1/3*I*trace(A) and dev2(A) = A-2/3*I*trace(A). The stress term in the incompressible momentum equation is as follows: d/dx_j {nu_eff*[(du_i/dx_j + du_j/dx_i)-2/3*du_k/dx_k delta_ij]}, which is the same as: d/dx_j {nu_eff*(du_i/dx_j+du_j/dx_i)} - 2/3*d/dx_i {nu_eff(du_k/dx_k)} which is in vector notation: laplacian(nu_eff*U) + div{nu_eff*transpose[grad(U)]} - div{2/3*nu_eff*I*trace[transpose(grad(U))]} and reduces to: laplacian(nu_eff*U) + div{nu_eff*dev2(transpose[grad(U)])} Notice that dev2 is here instead of dev, which agrees with the compressible coding. However, in the incompressible coding, dev is used, which seem incorrect. Now, the du_k/dx_k = trace[transpose(grad(U))] should be equal to zero in incompressible flow due to the continuity equation, so it seems that it should not matter if dev or dev2 is used. However, in the PISO algorithm, velocity may be predicted from a field that does not satisfy continuity due to initial conditions or insufficient pressure correction, so it seems like it would be wise to keep du_k/dx_k. I am wondering if dev2 is an addition to OpenFOAM 1.6 and the incompressible divDevReff (and divDevBeff for LES) didn't get updated to reflect the change. Can someone with the correct knowledge please help? Thank you, Matt

Last edited by poplar; August 25, 2010 at 18:38.

 October 13, 2010, 12:54 new nuEff() #10 Senior Member   Join Date: Sep 2010 Location: France Posts: 223 Rep Power: 9 Hi guys i need to add (implement) and use a new nuEff2(), how to do that? where to add the new nuEff() ? i tried but it's hard, since it was only one original "nu" defined in all the transportModels and viscosityModels, and is hard to change in all the files. help please

 October 26, 2012, 09:14 #11 Senior Member   Join Date: Jul 2011 Posts: 105 Rep Power: 7 I am curious about this too Last edited by haze_1986; October 27, 2012 at 07:35.

January 25, 2013, 05:27
#12
Senior Member

Join Date: Jul 2011
Posts: 105
Rep Power: 7
Quote:
 Originally Posted by poplar Hi,mchurchf. The complete form of div(StressTensor)is: div(muEff()*dev(fvc::grad(U)())) + div(muEff()*dev(fvc::grad(U)().T())) So -1/3*I*trace(A) is lncluded in both dev(grad(U)) and dev(grad(U).T()), in fact, laplacian(nuEff(), U) = div(muEff()*grad(U)) =div(muEff()*dev(fvc::grad(U))) + 1/3*I*trace(A) as a result, one 1/3*I*trace(A) is addded in laplacian(nuEff(), U), so a minus one must be subtracted in the later term. then,dev2(A) = A-2/3*I*trace(A). du_k/dx_k in incompressible fluids may be removed. If one retains it for correction, 1/3 or 2/3 is only a scale factor.
Hi, that sounds correct, but I do not understand why for the compressible case divDevRhoReff(U), dev2 is used instead?
A question about UEqn sonicFoam

 March 31, 2014, 08:22 #13 New Member   Matthias Stammen Join Date: Oct 2010 Posts: 8 Rep Power: 8 Hello, although it's some time ago and several replies were posted, I still don't understand, if the implementation is correct... Don't we have to use dev2() instead of dev() for the incompressible solvers (at least until convergence is reached)? Or did I just miss the correct reply? Regards, Matthias

November 6, 2014, 04:31
#14
Member

Fabian E.
Join Date: Nov 2009
Posts: 36
Rep Power: 8
Quote:
 Originally Posted by christju Hello, In fact, I've come across the same thing and I found the same conclusion than you Matthew... The reynolds stress tensor is defined as : -rho u'_i u'_j = 2 mu_t S_ij - 2/3 rho k delta_ij where k = (u'_i u'_i) /2 is the kinetic energy, and S_ij is the deviatoric part of the mean strain rate : S_ij = 1/2 (du_i/dx_j + du_j/dx_i) - 1/3 d_uk/dx_k delta_ij As you said Matthew, the stress term in the incompressible momentum equation is as follows: d/dx_j {nu_eff*[(du_i/dx_j + du_j/dx_i)-2/3*du_k/dx_k delta_ij]}, And in fact, from my point of view, a 2 is missing in the implementation of turbulence->divDevReff(U) of the incompressible model.... My other question is : Where the term "- 2/3 rho k delta_ij" of the Reynold stress is taken into account? Is it through a modified pressure defined as P = p/rho+2/3k and solved in the pressure equation? And then, what is writen in the output files? this modified pressure? If you have any idea.... Thank you in advance for your help, Julien
Exactly reprint of my doubts. The issue in the incompressible is not the problem for me - since I am dealing with compressible flows. There the implementation seems to be correct. But what I don't see:

Where the term "- 2/3 rho k delta_ij" of the Reynold stress is taken into account? Has anyone find the answer?

 July 15, 2015, 15:07 divDevRhoReff and divDevReff #15 Senior Member     Tobias Holzmann Join Date: Oct 2010 Location: Leoben (Austria) Posts: 1,519 Blog Entries: 6 Rep Power: 27 Hi all, as I read before, there are still some people who are confused about the equations and the behavior of the implemented code. Therefore, I want to make the derivations and want to show you that the implementation is correct for both cases. We consider compressible and incompressible fluids. Further more I only take into account laminar flow and explain the way to get to divDevRhoReff and divDevReff. Momentum equation Lets start with the obvious momentum equation: Due to the fact that everyone are more or less familiar with the equations, I do not mention the variables meaning. For the further proceeding I do not consider body forces. If we have newtonian fluid the stress tensor can be expressed as: Some modifications and we end up with: Combining both, and neglect all other body forces, we end up with: Lets focus only only to the RHS (step by step): Now it can be shown that the first term is the gradient of the pressure: The analytic proof: The second term at the RHS is often symboled with and stand for the viscose part of the stress tensor (normally without the divergence symbol): This guy is calculated by calling the function divDevRhoReff(U) or divDevReff(U). Now I will show that the implemented functions are correct. Compressible In compressible flow we have the full viscose stress tensor. Now I demonstrate that this term is exactly the divDevRhoReff(U) function. Lets start to modify the equation (again step by step). But first I want to introduce the necessary math operation. denotes an arbitary vector: using this formula and sorting the equation, we get the following: Thats it. If we call turbulence->divDevRhoReff() we will exactly get this equation. Using a substituion for the gradient of the transponed velocity field, the name of the function dev2 gets clearer: The deviatoric part of a matrix is defined as: Now we see, that the second term include the deviatoric part of the matrix (gradU). In compressible we call the dev2 due to the fact that the factor 2 is in the trace. To proove the equation, we can check out the code in the compressible tubulence file (laminar.C): http://foam.sourceforge.net/docs/cpp...ce.html#l00219 Code:  219 tmp laminar::divDevRhoReff(volVectorField& U) const 220 { 221 return 222 ( 223 - fvm::laplacian(muEff(), U) 224 - fvc::div(muEff()*dev2(T(fvc::grad(U)))) 225 ); 226 } is equal to (muEff = mu for laminar): Code: fvm::laplacian(muEff, U) is equal to Code:  224 - fvc::div(muEff()*dev2(T(fvc::grad(U)))) At least dev2 calculates exactly the deviatoric part. The code is here: http://foam.sourceforge.net/docs/cpp/a08631_source.html Code:  303 //- Return the deviatoric part of a symmetric tensor 304 template 305 inline SymmTensor dev2(const SymmTensor& st) 306 { 307 return st - SphericalTensor::twoThirdsI*tr(st); 308 } This is equal to: Check or no check , I think, its obvious. Incompressible For incompressible fluids (devide by ) we again start with the viscous stress tensor : Hence, the density is constant the first term (underlined) at the RHS is zero due to the mass conservation equation: After a huge amount of mathematics we get So there is no deviatoric part till now. But in FOAM we calculate the viscouse part of the stress tensor using divDevReff. Now we add the hydrostatic part multiply by the viscosity and substract it again: it follows: The last term is zero due to mass conservation and can be removed: We end up with: If we substitute the transponed gradient U matrix with A: Again we have the laplacian term and again the deviatoric part (here calcated with oneThird, so the correct definition of dev). And this is exactly what we get here: Code:  tmp laminar::divDevReff(volVectorField& U) const { return ( - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*dev(T(fvc::grad(U)))) ); } The code for the deviatoric part (dev()) is equal to dev2. The only difference is the factor 2/3 which is introduced by the divergence term as shown before. I hope everything is clear now and that there are no mistakes. Additionally I hope it makes stuff clearer and help anybody to get a better understanding how things work. Kind regards Thanks to Alexander Vakhrushev for all support! makaveli_lcf, olivierG, T.D. and 15 others like this. __________________ Best regards, Tobias Holzmann Some interesting OpenFOAM tutorials, publications and videos on www.Holzmann-cfd.de OpenFOAM Beginners should check out the new wiki on wiki.openfoam.com A list of some active OpenFOAM contributers can be found »here« A book about the basics of »Mathematics, Numerics, Derivations and OpenFOAM« can be found on www.Holzmann-cfd.de Last edited by Tobi; August 3, 2015 at 07:05. Reason: mu = nu in incompressible; Sign mistake and renamed phi to a because phi = scalar normally

 July 16, 2015, 09:10 #16 New Member   Join Date: Feb 2015 Posts: 2 Rep Power: 0 Tobi, Thanks for the clear and concise explanation. However, in the incompressible case, there are a few places where mass conservation can be invoked to set terms to zero, but are not. Why do we set the terms that we do to zero? I ask because nonNewtonianIcoFoam does not compute the viscous terms through divDevReff. Instead it goes through a couple more steps (that appear valid to me) to get to an alternate expression: Code: - fvm::laplacian(fluid.nu(), U) - (fvc::grad(U) & fvc::grad(fluid.nu()) Is nonNewtonianIcoFoam 'wrong'? What is the motivation for the different terms? In the thread below, I show that the two forms yield noticeably different results for a model problem on a highly non-Newtonian fluid. Discretization of viscosity terms for non-newtonian flow: Thanks, Steve

 July 24, 2015, 02:17 #17 Senior Member     Tobias Holzmann Join Date: Oct 2010 Location: Leoben (Austria) Posts: 1,519 Blog Entries: 6 Rep Power: 27 Hi, why we set some term (that could be set to zero) not to zero is the way I derivated the equations (: If we will go straight forward there is no need to do this. See below. __________________ Best regards, Tobias Holzmann Some interesting OpenFOAM tutorials, publications and videos on www.Holzmann-cfd.de OpenFOAM Beginners should check out the new wiki on wiki.openfoam.com A list of some active OpenFOAM contributers can be found »here« A book about the basics of »Mathematics, Numerics, Derivations and OpenFOAM« can be found on www.Holzmann-cfd.de Last edited by Tobi; August 6, 2015 at 04:05. Reason: Reject the formulation...

 August 6, 2015, 03:23 #18 Senior Member     Tobias Holzmann Join Date: Oct 2010 Location: Leoben (Austria) Posts: 1,519 Blog Entries: 6 Rep Power: 27 Hi all, the derivation is correct but not straight forward from the beginning. If I have time I will make a PDF where everything is straight forward. Then you can see why once we have 1/3 and the other time 2/3 and its not due to the fact that we extend a equation (like I did in the incompressible case). Of course, like I showed it is possible to derivate the 2/3 and 1/3 like I did but as I mentioned it is not straight forward. __________________ Best regards, Tobias Holzmann Some interesting OpenFOAM tutorials, publications and videos on www.Holzmann-cfd.de OpenFOAM Beginners should check out the new wiki on wiki.openfoam.com A list of some active OpenFOAM contributers can be found »here« A book about the basics of »Mathematics, Numerics, Derivations and OpenFOAM« can be found on www.Holzmann-cfd.de

 August 6, 2015, 03:48 #19 Member   Fabian E. Join Date: Nov 2009 Posts: 36 Rep Power: 8 I would highly appreciate it! Thank you - good work Tobi likes this.

October 23, 2015, 08:35
#20
Senior Member

Ehsan Asgari
Join Date: Apr 2010
Posts: 301
Rep Power: 9
Quote:
 Originally Posted by Tobi Hi all, as I read before, there are still some people who are confused about the equations and the behavior of the implemented code. Therefore, I want to make the derivations and want to show you that the implementation is correct for both cases. We consider compressible and incompressible fluids. Further more I only take into account laminar flow and explain the way to get to divDevRhoReff and divDevReff. Momentum equation Lets start with the obvious momentum equation: Due to the fact that everyone are more or less familiar with the equations, I do not mention the variables meaning. For the further proceeding I do not consider body forces. If we have newtonian fluid the stress tensor can be expressed as: Some modifications and we end up with: Combining both, and neglect all other body forces, we end up with: Lets focus only only to the RHS (step by step): Now it can be shown that the first term is the gradient of the pressure: The analytic proof: The second term at the RHS is often symboled with and stand for the viscose part of the stress tensor (normally without the divergence symbol): This guy is calculated by calling the function divDevRhoReff(U) or divDevReff(U). Now I will show that the implemented functions are correct. Compressible In compressible flow we have the full viscose stress tensor. Now I demonstrate that this term is exactly the divDevRhoReff(U) function. Lets start to modify the equation (again step by step). But first I want to introduce the necessary math operation. denotes an arbitary vector: using this formula and sorting the equation, we get the following: Thats it. If we call turbulence->divDevRhoReff() we will exactly get this equation. Using a substituion for the gradient of the transponed velocity field, the name of the function dev2 gets clearer: The deviatoric part of a matrix is defined as: Now we see, that the second term include the deviatoric part of the matrix (gradU). In compressible we call the dev2 due to the fact that the factor 2 is in the trace. To proove the equation, we can check out the code in the compressible tubulence file (laminar.C): http://foam.sourceforge.net/docs/cpp...ce.html#l00219 Code:  219 tmp laminar::divDevRhoReff(volVectorField& U) const 220 { 221 return 222 ( 223 - fvm::laplacian(muEff(), U) 224 - fvc::div(muEff()*dev2(T(fvc::grad(U)))) 225 ); 226 } is equal to (muEff = mu for laminar): Code: fvm::laplacian(muEff, U) is equal to Code:  224 - fvc::div(muEff()*dev2(T(fvc::grad(U)))) At least dev2 calculates exactly the deviatoric part. The code is here: http://foam.sourceforge.net/docs/cpp/a08631_source.html Code:  303 //- Return the deviatoric part of a symmetric tensor 304 template 305 inline SymmTensor dev2(const SymmTensor& st) 306 { 307 return st - SphericalTensor::twoThirdsI*tr(st); 308 } This is equal to: Check or no check , I think, its obvious. Incompressible For incompressible fluids (devide by ) we again start with the viscous stress tensor : Hence, the density is constant the first term (underlined) at the RHS is zero due to the mass conservation equation: After a huge amount of mathematics we get So there is no deviatoric part till now. But in FOAM we calculate the viscouse part of the stress tensor using divDevReff. Now we add the hydrostatic part multiply by the viscosity and substract it again: it follows: The last term is zero due to mass conservation and can be removed: We end up with: If we substitute the transponed gradient U matrix with A: Again we have the laplacian term and again the deviatoric part (here calcated with oneThird, so the correct definition of dev). And this is exactly what we get here: Code:  tmp laminar::divDevReff(volVectorField& U) const { return ( - fvm::laplacian(nuEff(), U) - fvc::div(nuEff()*dev(T(fvc::grad(U)))) ); } The code for the deviatoric part (dev()) is equal to dev2. The only difference is the factor 2/3 which is introduced by the divergence term as shown before. I hope everything is clear now and that there are no mistakes. Additionally I hope it makes stuff clearer and help anybody to get a better understanding how things work. Kind regards Thanks to Alexander Vakhrushev for all support!
Dear Tobias,

I suppose that a deviatoric tensor should be trace-free, while you have added the trace to the original tensor in the following part:

Please correct me if I am wrong!!

Thanks,
Syavash

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post David CFX 18 June 15, 2011 08:21 Ajay Rao FLUENT 8 February 15, 2010 10:15 tomek FLUENT 1 July 24, 2006 17:52 ustcer FLUENT 1 April 4, 2004 13:08 shabah CFX 2 June 18, 2001 23:59

All times are GMT -4. The time now is 15:12.

 Contact Us - CFD Online - Top