CFD Online Discussion Forums (http://www.cfd-online.com/Forums/)
-   OpenFOAM Running, Solving & CFD (http://www.cfd-online.com/Forums/openfoam-solving/)

 makaveli_lcf November 19, 2010 07:09

Hi all,

one important thing came to my mind yesterday and I would appreciate your comments on this! Let's say we have a fixedGradient BC, and consider evaluate method for our field:

Code:

```template<class Type> void fixedGradientFvPatchField<Type>::evaluate(const Pstream::commsTypes) {     if (!this->updated())     {         this->updateCoeffs();     }     Field<Type>::operator=     (         this->patchInternalField() + gradient_/this->patch().deltaCoeffs()     );     fvPatchField<Type>::evaluate(); }```
It means, that despite our selected scheme for the gradient calculation, we just use linear interpolation from the near-the-boundary cell center to the boundary face:

fi(wall) = fi(cell_center) + Grad0 * d

Is this a really correct estimation??? For example, if we use fourth order inside the domain for the interpolation and we end up with only (2nd?) order at the boundary using such BC type?

Have a nice day!

Alexander

 Fransje November 19, 2010 10:01

Dear Alexander,

The lower order estimation on the boundary is correct. Of course you would also like a higher-order estimation on the boundary, but because it makes the implementation of such a scheme more complex, a lower order estimation on the boundary is acceptable. It should not influence the order of convergence of the solution in your domain.
So your overall solution will not degrade from forth order accurate to second order accurate because you only use a second order accurate gradient estimation scheme on the boundary.

I hope this helps!

Kind regards,

Francois.

 makaveli_lcf November 19, 2010 10:08

Another point to discuss: there is no non-orthogonal correction at the boundary:

Code:

```00161            //- Return gradient at boundary 00162            virtual tmp<Field<Type> > snGrad() const 00163            { 00164                return gradient_; 00165            }```
So, if we calculate boundary values using vector between the cell center and and the face center it is not correct especially for the sqewed cells.

 Fransje November 21, 2010 13:59

Dear Alexander,

Could you not try a dot product between the velocity component and the the face area? Something like:
Code:

```boundaryUxValue = ( Ux & yourBoundaryPatch.patch().Sf() ); etc.```
Kind regards,

François.

 makaveli_lcf November 21, 2010 16:47

François, what should I check with this? Do you mean dot product between total velocity and normal vector to estimate flux?

 Fransje November 22, 2010 08:57

Dear Alexander,

Yes. If you are afraid that the inbuilt implementations do not compute/use the solutions you expect, you can easily check that the values OpenFOAM uses are similar to those you would use in your own implementation. I thought this might help for your boundary.

Kind regards,

Francois.

 Fransje November 22, 2010 12:20

Hum. A quick look at the wiki also returned the following answer. This should take care of the issues altogether.

Quote:

Kind regards,

Francois.

 andrea December 27, 2010 05:53

Correction at boundary

Hi all,
can anyone clarify me this point, please:
chosen a corrected scheme for the Laplacian computation, the non-orthogonal correction is applied automatically to the boundaries too?

Thank you
Andrea

 andrea December 30, 2010 12:05

Correction at boundary

Hi all,

looking into http://foam.sourceforge.net/doc/Doxy...8C_source.html
I see on line 309:
Code:

```// Boundary correction vectors set to zero for boundary patches // and calculated consistently with internal corrections for // coupled patches```
so that the implementation of boundary correction described in Eugene PhD thesis
seems to be not implemented.

And I read from many source that DeltaCoeffs() should be simply the inverse
of the cell center to cell center vector while in the code is replaced by
Code:

```// Stabilised form for bad meshes DeltaCoeffs[facei] = 1.0/max(unitArea & delta, 0.05*mag(delta));```
I don't know, maybe I'm looking in the wrong place!
Andrea

 bigphil January 13, 2012 13:48

2 Attachment(s)
Hi,

As far as I can see, the snGrad is calculated incorrectly on non-orthogonal fixedValue boundaries.
There should be non-orthogonal correction on fixedValue boundaries but it is set to zero (in surfaceInterpolation.C).

I have prepared a simple utility to check:
Code:

```\*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "fixedGradientFvPatchFields.H" int main(int argc, char** argv) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H"     Info << "Testing field operations" << nl << endl;   //-------------------------------------------------------------------------//   //- define rotation   //-------------------------------------------------------------------------//   scalar theta = 1; // degrees   const scalar PI = 3.141592;   theta *= PI;   theta /= 180;     tensor rotMat(::cos(theta), -(::sin(theta)), 0,                 ::sin(theta), ::cos(theta),    0,                 0,            0,              1);   //-------------------------------------------------------------------------//   //-------------------------------------------------------------------------//   Info << "Reading alpha" << endl;   volVectorField alpha     (     IOobject     (       "alpha",       runTime.timeName(),       mesh,       IOobject::MUST_READ,       IOobject::NO_WRITE       ),     mesh     //    ((rotMat & mesh.C()) -  mesh.C()),     //fixedValueCorrectedFvPatchVectorField::typeName     //fixedValueFvPatchVectorField::typeName     //fixedGradientCorrectedFvPatchVectorField::typeName     //fixedGradientFvPatchVectorField::typeName     //boundaryTypes     );   //-------------------------------------------------------------------------//   //-------------------------------------------------------------------------//   Info << nl << "Setting alpha field" << endl;   //-------------------------------------------------------------------------//   //- increment time   runTime++;   //- set the internal field   alpha = ((rotMat & mesh.C()) -  mesh.C());   //- set the fixedValue and fixedGradient boundaries   forAll(alpha.boundaryField(), patchi)     {       if(alpha.boundaryField()[patchi].type() == fixedValueFvPatchVectorField::typeName)         {           Info << "\tSetting alpha fixedValue boundaries for patch "               << mesh.boundary()[patchi].name() << endl;           const vectorField& patchC = mesh.boundaryMesh()[patchi].faceCentres();                           alpha.boundaryField()[patchi] == ((rotMat & patchC) -  patchC);               }       else if(alpha.boundaryField()[patchi].type() == fixedGradientFvPatchVectorField::typeName)         {           Info << "\tSetting alpha fixedGradient boundaries for patch "               << mesh.boundary()[patchi].name() << endl;           vectorField n = mesh.boundary()[patchi].Sf() / mesh.boundary()[patchi].magSf();                 fixedGradientFvPatchVectorField& alphaPatchGrad = refCast<fixedGradientFvPatchVectorField>(alpha.boundaryField()[patchi]);                           //- analytical internal gradAlpha is (rotMat.T() - I)           //- therefore analytical boundary gradient is:           alphaPatchGrad.gradient() = n & (rotMat.T() - I);               }       else         {           FatalError << "The geometry should only have boundaries of type"                     << " fixedValue or fixedGradient!"                     << exit(FatalError);         }     }   alpha.write();   //-------------------------------------------------------------------------//   surfaceVectorField n = mesh.Sf()/mesh.magSf();   //-------------------------------------------------------------------------//   //- gradient of vector field   //- least squares seems right in the boundary cells...   //- Gauss linear is wrong in all skewed cells as expected   //-------------------------------------------------------------------------//   Info << nl << "Writing out the gradient" << endl;   volTensorField gradAlpha     (     IOobject     (       "gradAlpha",       runTime.timeName(),       mesh,       IOobject::NO_READ,       IOobject::NO_WRITE       ),     fvc::grad(alpha)     );   Info << "\tMax mag is " << max(mag(gradAlpha)).value()       << "\tMin mag is " << min(mag(gradAlpha)).value()       << endl;       gradAlpha.write();  //-------------------------------------------------------------------------//     //-------------------------------------------------------------------------//   //- laplacian of alpha   //- lapAlpha is fine when the BC of alpha are fixedValue but lapAlpha is   //- wrong in the boundary cells when the BC is fixedGradient... assuming I   //- set the fixedGradient BCs correctly   //-------------------------------------------------------------------------//   Info << nl << "Writing out the laplacian of alpha" << endl;   volVectorField lapAlpha     (     IOobject     (       "lap(alpha)",       runTime.timeName(),       mesh,       IOobject::NO_READ,       IOobject::NO_WRITE       ),     fvc::laplacian(alpha, "lap(alpha)")     // equivalent to fvc::surfaceIntegrate(fvc::snGrad(alpha)*mesh.magSf())     );   Info << "\tMax mag is " << max(mag(lapAlpha)).value()       << "\tMin mag is " << min(mag(lapAlpha)).value()       << endl;   lapAlpha.write();   //-------------------------------------------------------------------------//   Info << nl << endl;   return 0; }```
This utility defines an analytical vector field alpha.
grad(alpha) should have the constant components (-0.00015, 0.017452, 0, -0.017452, -0.00015, 0, 0, 0, 0) and laplacian(alpha) should be (0, 0, 0).The alpha field actually corresponds to rigid rotation about the z-axis.

fvc::grad(alpha) is calculated and seems correct, but the fvc::laplacian(alpha) is incorrect on non-orthogonal fixedValue boundaries!

I have attached a non-orthogonal test case which shows the problem.

Does anybody have any thoughts on this, am I misunderstanding something?

Philip

Edit: by the way, fvc::laplacian(alpha) is correct for fixedGradient boundaries because they don't need non-orthogonal correction as the surface-normal gradient is already known.

Edit2: I tried this on OpenFOAM-2.1.x and OpenFOAM-1.6-ext with the same results. Also I checked old foam code and it seems to have no correction on the boundaries too, hmnnn...

 bigphil November 25, 2012 16:26

Hi,

for future reference,

OpenFOAM sets non-orthogonal correction to zero on the boundaries. As described in Hrv's thesis, it is assumed that the dependent variable is uniform along the boundary face and hence no non-orthogonal correction is applied.

However, there are cases (for instance in solid mechanics) when this is a poor assumption and it is assumed that the dependent variable varies linearly along the boundary face and boundary non-orthogonal corrections are imperative.

So if you need boundary non-orthogonal correction then custom boundary conditions must be used where non-orthogonal corrections are imposed (see here).

Philip

 All times are GMT -4. The time now is 03:05.