CFD Online Discussion Forums (http://www.cfd-online.com/Forums/)
-   OpenFOAM Running, Solving & CFD (http://www.cfd-online.com/Forums/openfoam-solving/)
-   -   TwoPhaseEulerFoam alpha "ripples" (http://www.cfd-online.com/Forums/openfoam-solving/99217-twophaseeulerfoam-alpha-ripples.html)

 MichaelB88 March 28, 2012 17:45

TwoPhaseEulerFoam alpha "ripples"

3 Attachment(s)
Hello,

I am trying to simulate a biomass fluidized bed with Geldart type A particles (zeolite particles, d=100e-06m, rho=1750 kg/m^3). I am using an axi-symmetric assumption. For now, I am first doing the model with kinetic theory off, to avoid complications. With kinetic theory on, I was getting the same problems, plus more.

I am using a fluidizing velocity of 1.5 cm/s. The actual minimum fluidization velocity for the experimental bed I'm modeling is around 0.6 cm/s. There is also a center feeding tube, from which a gas velocity will come out (a drop tube for cellulose), but for now I've set that to 0 velocity.

My problem is ripples or waves in alpha where the fluidizing gas is expelled from the bottom. I believe it is the result of numerical errors.

I have tried several different types of numerical schemes, starting with the default limitedLinear, then trying vanLeer (crashed, made no difference), QUICK (crashes and gives relatively large negative alpha values), and upwind (1st order, solved the ripple-problem but gave unrealistic answers, no bubbles).

Any ideas? Please take a look at the photos for a better look at what I mean.

Here are the fvSchemes and fvSolutions files:
fvSchemes:
Code:

```ddtSchemes {     default        Euler; } gradSchemes {     default        Gauss linear; } divSchemes {     default        none;     div(phia,Ua)    Gauss limitedLinearV 1;     div(phib,Ub)    Gauss limitedLinearV 1;     div(phib,k)    Gauss limitedLinear 1;     div(phib,epsilon) Gauss limitedLinear 1;     div(phi,alpha)  Gauss limitedLinear01 1;     div(phir,alpha) Gauss limitedLinear01 1;     div(phi,Theta)  Gauss limitedLinear 1;     div(Rca)        Gauss linear;     div(Rcb)        Gauss linear; } laplacianSchemes {     default        none;     laplacian(nuEffa,Ua) Gauss linear corrected;     laplacian(nuEffb,Ub) Gauss linear corrected;     laplacian((rho*(1|A(U))),p) Gauss linear corrected;     laplacian(alphaPpMag,alpha) Gauss linear corrected;     laplacian(DkEff,k) Gauss linear corrected;     laplacian(DepsilonEff,epsilon) Gauss linear corrected; } interpolationSchemes {     default        linear; } snGradSchemes {     default        corrected; } fluxRequired {     default        no;     p              ; }```
fvSolution:
Code:

```solvers {     p     {         solver          GAMG;         tolerance      1e-08;         relTol          0;         smoother        DIC;         nPreSweeps      0;         nPostSweeps    2;         nFinestSweeps  2;         cacheAgglomeration true;         nCellsInCoarsestLevel 10;         agglomerator    faceAreaPair;         mergeLevels    1;     }     pFinal     {         \$p;         tolerance      1e-08;         relTol          0;     }     "(k|epsilon)"     {         solver          PBiCG;         preconditioner  DILU;         tolerance      1e-05;         relTol          0.1;     }     "(k|epsilon)Final"     {         solver          PBiCG;         preconditioner  DILU;         tolerance      1e-05;         relTol          0;     }     alpha     {         solver          PBiCG;         preconditioner  DILU;         tolerance      1e-10;         relTol          0;     }     alphaFinal     {         solver          PBiCG;         preconditioner  DILU;         tolerance      1e-10;         relTol          0;     } } PIMPLE {     nCorrectors    4;     nNonOrthogonalCorrectors 0;     nAlphaCorr      2;     correctAlpha    yes;     pRefCell        0;     pRefValue      0; }```
Turbulence off, laminar
alphaCorrector yes

Thanks!

Michael

 S choi July 9, 2015 04:20

Hi!

Hi.
I'm conducting a simulation similar with yours and I find your post written a few years ago.
But this post has no answer.

I'm wondering whether you solve this problem and the way you solve.

 All times are GMT -4. The time now is 08:27.