CFD Online Discussion Forums (http://www.cfd-online.com/Forums/)
-   OpenFOAM (http://www.cfd-online.com/Forums/openfoam/)

 chegdan September 28, 2011 13:58

A few simple questions about linearUpwind and limitedLinear

I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification.

linearUpwind:

I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as:

where and are the face value of phi and the cell centered values of phi in the upstream cells respectively. I am reading through the code of linearUpwind and I see:

Code:

    GeometricField<Type, fvsPatchField, surfaceMesh>& sfCorr = tsfCorr();     const surfaceScalarField& faceFlux = this->faceFlux_;     const labelList& owner = mesh.owner();     const labelList& neighbour = mesh.neighbour();     const volVectorField& C = mesh.C();     const surfaceVectorField& Cf = mesh.Cf();     GeometricField         <typename outerProduct<vector, Type>::type, fvPatchField, volMesh>         gradVf = gradScheme_().grad(vf);     forAll(faceFlux, facei)     {         if (faceFlux[facei] > 0)         {             label own = owner[facei];             sfCorr[facei] = (Cf[facei] - C[own]) & gradVf[own];         }         else         {             label nei = neighbour[facei];             sfCorr[facei] = (Cf[facei] - C[nei]) & gradVf[nei];         }     }
I see the mesh.C and mesh.Cf and I am led to believe that through quickly reading the code, these are the cell centroid and face centroid, thus producing an r vector that is dotted with the gradient between the owner and neighbor cells (&gradVf) controlled by gradSchemes. I then see some similar code to take care of the boundaries.

When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts.

limitedLinear
This again is second order and is bounded using a sweby limiter (http://www.cfd-online.com/Forums/ope...r-schemes.html post 16). I am just a little fuzzy on what the final simplified form of the equation is for limitedLinear (I admit I haven't looked at it as much as linearUpwind). I am out of my office and will look through Richard Pletcher, John Tannehill and Dale Anderson when I get a chance. Laslty, correct me if I'm wrong but the parameter following a definition of a limitedLinear declaration is passed to the limiter, where 1 uses the limiter and 0 does not (with anything in between being a blend).

Sorry for the massive post, and any clarification would be fantastic and if I find an answer, I will post the result here. And for those interested on how I did the math in the forum, look at (http://www.cfd-online.com/Forums/sit...ne-forums.html)

Dan

 chegdan September 28, 2011 19:05

on the limitedLinear, it seems that my knowledge of limiters is lacking and it may turn out to be a simple answer. Looking in Dr. Jasak's thesis (pg 98), I found that:

where is the value of phi at the face for a higher order scheme. For limitedLinear, it is just the central difference scheme as the "HO" and the limiter () is a Sweby limiter (http://www.cfd-online.com/Forums/ope...ar-scheme.html). if there is more to add here or there are corrections then please do.

Dan

 caramelo September 29, 2011 04:48

Yes you are right. limitedLinear is using the Sweby limiter [1]. If you want further information about TVD Schemes and different limiters, I think [2] might be interesting to get a first brief impression.

About linearUpwind I don't know much. Till now I just thought it is something like linear upwind differencing but reading your post seems like its only half the story.

[1] P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM Journal on Numerical Analysis, (Vol. 21):pp. 995–1011, 1984.
[2] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson, 2007.

 chegdan September 29, 2011 14:37

@caramelo : I found a mistake in my first post concerning the linearUpwind definition and just corrected it (sorry about that). I did have a chance to look at the Sweby paper and also a few other sources on TVD schemes, very interesting. Thanks for the sources.

I see throughout the forum that the linearUpwind is bounded, but Ferziger and Peric' note that second order upwind is unbounded.

My question is that if one uses Gauss linear as a grad scheme for linearUpwind, will this approach the traditional second order upwind and therefore unbounded?

Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection?

Lastly, is the linearUpwind scheme only bounded if limited versions of the gradient scheme are used, i.e. limited linear, cellLimited, faceMDLimited etc.?

Dan

 chegdan October 1, 2011 15:51

[Solved] A few simple questions about linearUpwind and limitedLinear

Quote:
 Originally Posted by chegdan (Post 326116) @caramelo : I found a mistake in my first post concerning the linearUpwind definition and just corrected it (sorry about that). I did have a chance to look at the Sweby paper and also a few other sources on TVD schemes, very interesting. Thanks for the sources. I see throughout the forum that the linearUpwind is bounded, but Ferziger and Peric' note that second order upwind is unbounded. My question is that if one uses Gauss linear as a grad scheme for linearUpwind, will this approach the traditional second order upwind and therefore unbounded? Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection? Lastly, is the linearUpwind scheme only bounded if limited versions of the gradient scheme are used, i.e. limited linear, cellLimited, faceMDLimited etc.? Dan
Sometimes I think I need to put the hash tag #dumbquestion or #thinking_out_loud on my comments to let everyone know that I'm thinking out loud about something. For my question:

Quote:
 Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection
The answer to that one is that it is the regular Gauss linear interpolation scheme that we use all the time.

In the end I think that I have the answer that I was looking for.

Dan

 florian_krause October 3, 2011 03:45

Hi Dan,

Quote:
 When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts
did you find an answer to this? I also had a look at the source and couldn't find the part where the pieces are put together, namely cell centered phi and gradient of phi.

Apart from this, as far as I understand, linearUpwind scheme is unbounded as long as you don't specify one of the limiters cellLimited, faceLimited etc.

Best,
Florian

 chegdan October 3, 2011 12:55

Quote:
 When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts
From what I can see in the Doxygen information for the limitedSurfaceInterpolationScheme class, everything is pieced together there. linearUpwind returns the weighting factors and then its all put together nicely by the limitedSurfaceInterpolationScheme class.

and of course:
Quote:
 Apart from this, as far as I understand, linearUpwind scheme is unbounded as long as you don't specify one of the limiters cellLimited, faceLimited etc
This is what I have found as well...so far. Thanks for the reply and if anyone has a correction, please respond.

Dan

 yhy20081016 October 18, 2013 23:49

How can you find out which file contains the source code implementing the 'linearUpwi

Quote:
 Originally Posted by chegdan (Post 325960) I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification. linearUpwind: I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as: where and are the face value of phi and the cell centered values of phi in the upstream cells respectively. I am reading through the code of linearUpwind and I see: Code:     GeometricField& sfCorr = tsfCorr();     const surfaceScalarField& faceFlux = this->faceFlux_;     const labelList& owner = mesh.owner();     const labelList& neighbour = mesh.neighbour();     const volVectorField& C = mesh.C();     const surfaceVectorField& Cf = mesh.Cf();     GeometricField         ::type, fvPatchField, volMesh>         gradVf = gradScheme_().grad(vf);     forAll(faceFlux, facei)     {         if (faceFlux[facei] > 0)         {             label own = owner[facei];             sfCorr[facei] = (Cf[facei] - C[own]) & gradVf[own];         }         else         {             label nei = neighbour[facei];             sfCorr[facei] = (Cf[facei] - C[nei]) & gradVf[nei];         }     } I see the mesh.C and mesh.Cf and I am led to believe that through quickly reading the code, these are the cell centroid and face centroid, thus producing an r vector that is dotted with the gradient between the owner and neighbor cells (&gradVf) controlled by gradSchemes. I then see some similar code to take care of the boundaries. When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts. limitedLinear This again is second order and is bounded using a sweby limiter (http://www.cfd-online.com/Forums/ope...r-schemes.html post 16). I am just a little fuzzy on what the final simplified form of the equation is for limitedLinear (I admit I haven't looked at it as much as linearUpwind). I am out of my office and will look through Richard Pletcher, John Tannehill and Dale Anderson when I get a chance. Laslty, correct me if I'm wrong but the parameter following a definition of a limitedLinear declaration is passed to the limiter, where 1 uses the limiter and 0 does not (with anything in between being a blend). Sorry for the massive post, and any clarification would be fantastic and if I find an answer, I will post the result here. And for those interested on how I did the math in the forum, look at (http://www.cfd-online.com/Forums/sit...ne-forums.html) Dan
How can you find out which file contains the source code implementing the 'linearUpwind' scheme? Please teach me. Thank you very much.

 chegdan October 21, 2013 09:57

Linux commands to search for file names and within files are your friend. To look for the linearUpwind source, try

Code:

cd $FOAM_SRC grep -R 'linearUpwind' . and then look for references to linearUpwind (you will see many). From that you can go through source code files. If you already know the name of the source file (in this case its easy since we want linearUpwind.C or linearUpwind.H), you can do a Code: cd$FOAM_SRC find . -name 'linearUpwind.C'
and that will tell you where a specific file lives. After a while you will learn where different source code resides and be able to find things without searching like this. Good luck.

 yhy20081016 October 26, 2013 22:44

Thank you very much.

 Anne Lincke January 10, 2014 18:51

Quote:
 Originally Posted by chegdan (Post 325960) I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification. linearUpwind: I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as: where and are the face value of phi and the cell centered values of phi in the upstream cells respectively.
Dear Dan, Dear Foamers,

I found your post which is very interesting for me.
Could you please tell me how one can derive the equation above?
I found this equation implemented in OpenFOAM, and in Fluent it is obviously the same.
But I have problems in understanding this equation.
For LUDS (linear upwind) we discretize the face value as

How is the implemented formula connected to that?

Anne

 Bazinga April 10, 2015 03:47

Quote:
 Originally Posted by Anne Lincke (Post 469529) Dear Dan, Dear Foamers, I found your post which is very interesting for me. Could you please tell me how one can derive the equation above? I found this equation implemented in OpenFOAM, and in Fluent it is obviously the same. But I have problems in understanding this equation. For LUDS (linear upwind) we discretize the face value as How is the implemented formula connected to that? Thank you very much for an answer in advance! Anne
I am a bit late to the discussion but I am studying interpolation schemes a bit and I think I can answer your question. I am still fairly new to the topic so there might be an error so feel free to correct me.

Taylor Expansion around P gives you this formula:

Now for upwind the flux over the east surface of a 2D CV for a flow from west:

The rest of the equation is the truncation error, thus first order.
If you also calculate the first truncated term your scheme will become second order and you will get this expression for your flux over face e:

For

You get:

Hope that helps :)

 Anne Lincke April 10, 2015 04:54

Thank you very much for your answer! Meanwhile I have also been able to understand the formula, but it is nice to see the answer here as well.

Have a nice day!

Anne

 davibarreira October 10, 2015 11:52

Isnt the correct way like this?:

Such that, if :

If :

And if , we get the Linear Upwind Differencing (LUD):

 Bazinga October 11, 2015 02:29

Quote:
 Originally Posted by davibarreira (Post 567466) Isnt the correct way like this?: Such that, if : If : And if , we get the Linear Upwind Differencing (LUD):
Just looked through it briefly. I think you are right. Thanks. The last part of my last reply should be:

" which does not equal the proposed equations."

 davibarreira October 11, 2015 10:17

One thing got me confused though, in the OpenFOAM website (http://cfd.direct/openfoam/user-guide/fvschemes/), it's written "Some TVD/NVD schemes require a coefficient ψ,0 ≤ ψ ≤ 1 where ψ = 1 corresponds to TVD conformance, usually giving best convergence and ψ = 0 corresponds to best accuracy. Running with ψ = 1 is generally recommended."
So this implies that using ψ = 0 would give the higher order scheme (central difference), which is the opposite stated in dr. Jasak's thesis.

I created a new thread with some more questions related to the topic.
http://www.cfd-online.com/Forums/ope...tedlinear.html
Any thoughts?

 Anne Lincke October 13, 2015 03:59

Dear Bazinga and Davi,

I try to derive the implemented formula once again:
Two cell centers in upwind flow direction ( and ) are taken into account. The Taylor series leads to the approximation of at cells and and, subsequently, at face

where denotes the distance from to .
The first order upwind approximation is numerically very stable, as the upwind term stabilizes the diagonal of the matrix.
Therefore, we use the implicit term of an upwind discretization as a matrix coefficient
and add the remaining terms as explicit correction terms on the right-hand side of the equation system.
The numerical approximation for the LUDS discretization thus transforms to

The second term is the explicit correction term.
This equals the implemented formula.

 All times are GMT -4. The time now is 21:24.