CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Phoenics

about energy equation

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   June 28, 2001, 02:56
Default about energy equation
  #1
helen
Guest
 
Posts: n/a
I use the newest edition of Phoenics 3.3 to simulate the temperature and velocity fields of steelí»s Solidification process. The energy equation is enthalpy equation. The variable I solved is H1, then I name (H1)=TMP1. I want to know whether the result is temperature or enthalpy. If the variable I solved is TEMP, the result of course is temperature. But what is the difference between the two methods? I use the two methods to solve the temperature field but the result is not same. I do appreciate you if you can explain these.
  Reply With Quote

Old   July 9, 2001, 07:20
Default Re: about energy equation
  #2
Mike Malin
Guest
 
Posts: n/a
In PHOENICS the energy equation may be solved in terms of enthalpy (H1) or temperature (TEM1). Both these equations have units of Watts when integrated over the contol volume.

If you solve enthalpy H1 then you must specify an enthalpy-temperature relationship (H-T) via TMP1=GRND, for example. If you then STORE(TMP1), H1 is the specific enthalpy and the specific heat is implied in the H-T relationship from which PHOENICS will deduce the temperature TMP1. The boundary conditions must reflect the fact that you are solving for H1 by means of specifying the incoming values of H1 according to your H-T relationship.

If you want to solve for temperature directly, then I would not recommend your current practice of converting H1 to temperature, as you will have to be very careful with your implementation to ensure consistency. It is simply not worth the effort because you can solve for the energy equation in terms of the temperature variable TEM1. This means you will have to specify the specific heat (CP1) and thermal conductivity PRNDTL(TEM1).

If you are dealing with solidification then the evolution of latent heat can appear directly as a source term when using H1 or TEM1, or with TEM1 one can use the alternative approach of an effective specific heat. However, The latter may lead to slow convergence and so I would not recommend that initially.

The boundary conditions and source terms for TEM1 are specified in terms of energy, except in so far when the temperature is known, for then temperature can be specified directly.
  Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
energy equation Tiz Main CFD Forum 1 April 1, 2007 01:13
Energy equation Tomik FLUENT 0 November 5, 2006 08:41
energy equation tod FLUENT 0 March 14, 2006 15:37
Energy equation Suresh Balasubramanian FLUENT 1 April 6, 2003 02:54
about energy equation helen CD-adapco 0 June 28, 2001 02:54


All times are GMT -4. The time now is 15:37.