CFD Online Logo CFD Online URL
Home > Wiki > Cavitation modeling

Cavitation modeling

From CFD-Wiki

Revision as of 00:31, 22 May 2007 by Eluzai (Talk | contribs)
Jump to: navigation, search

Cavitation phenomena in physics is the phenomena of change in state (phase) of the matter (eg. water) from liquid to vapour due to pressure drop of the surrounding domain. This pressure drop usually happens when the liquid is in rapid motion (flow). The typical example of such phenomena is found in turbomachinery and hydrodynamics. In both cases this constitutes a limitation for the performances of the device that rotates the fluid because of the drawbacks of cavitation inception amongst which are:

  • Vibrations
  • Erosion
  • Acoustic inconvenience
  • Performance degradation

Modeling techniques

A number of methods exist for modeling cavitation. They can be divided into the following classes:

  • Level-set/volume-of-fluid methods
  • Boundary Element methods
  • Bubble dynamics modeling
  • Interfacial transport techniques

Cavitation codes:

  • UNCLE-M - ARL/Penn. State - a preconditioned, homogenous, multiphase, Reynolds Averaged Navier-Stokes model with mass transfer
  • CRUNCH - Craft-tech's RANS solver
  • CAV2DBL - UT's two-dimensional panel method coupled with XFOIL boundary layer solver
  • PROPCAV - UT's boundary element method for predicting cavitation on propellers

External links:

My wiki