CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Introduction to turbulence/Free turbulent shear flows

Introduction to turbulence/Free turbulent shear flows

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Introduction)
(Introduction)
Line 2: Line 2:
Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in natural and engineering environments. The jet of of air issuing from one's nostrils or mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent free shear flows.
Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in natural and engineering environments. The jet of of air issuing from one's nostrils or mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent free shear flows.
 +
 +
Free shear flows in the real world are most often turbulent. Even if generated as laminar flows, they tend to become turbulent much more rapidly than the wall-bounded flows which we will discuss later. This is because the three-dimensional vorticity necessary for the transition to torbulence can develop

Revision as of 04:24, 9 June 2008

Introduction

Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in natural and engineering environments. The jet of of air issuing from one's nostrils or mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent free shear flows.

Free shear flows in the real world are most often turbulent. Even if generated as laminar flows, they tend to become turbulent much more rapidly than the wall-bounded flows which we will discuss later. This is because the three-dimensional vorticity necessary for the transition to torbulence can develop

My wiki