# Inviscid flow

(Difference between revisions)
 Revision as of 07:39, 14 November 2005 (view source)Razek (Talk | contribs) (→Related pages)← Older edit Revision as of 12:00, 15 November 2005 (view source)Razek (Talk | contribs) (→Euler equations as the limit of Navier-Stokes equations)Newer edit → Line 50: Line 50: Have a look at this diskussion: Have a look at this diskussion: http://www.cfd-online.com/Forum/fluent.cgi?read=32738 http://www.cfd-online.com/Forum/fluent.cgi?read=32738 + http://www.cfd-online.com/Forum/fluent.cgi?read=32788 ==Related pages== ==Related pages==

## Revision as of 12:00, 15 November 2005

A flow in which viscous effects can be neglected is known as inviscid flow. At high Reynolds numbers, flow past slender bodies involve thin boundary layers. Viscous effects are important only inside the boundary layer and the flow outside it is nearly inviscid. If the boundary layer is not separated then the inviscid flow model can be used to predict the pressure distribution with reasonable accuracy. Although no practical flow is inviscid, the inviscid assumption is valid if the time scales for diffusion are much larger compared to the time scales for convection, which is measured by the Reynolds number.

## Governing Equations

The governing equations for inviscid flow, also known as Euler equations, are obtained by discarding the viscous terms from the Navier-Stokes equations

• Continuity equation
$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j}(\rho u_j)= 0$
• Momentum equation
$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j + p \delta_{ij}) = 0$
• Energy equation
$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}[(\rho E + p)u_j] = 0$

where

• $\rho$ is the density
• $u_i$ is the fluid velocity
• $p$ is the pressure
• $E$ is the total energy per unit mass of fluid
$E = \frac{p}{\gamma - 1} + \frac{1}{2} \rho |u|^2$

The above equations are closed by taking an equation of state, the simplest being the ideal gas

$p = \rho R T$

where

• $R$ is the gas constant
• $T$ is the absolute temperature