# Reynolds averaging

(Difference between revisions)
Jump to: navigation, search
 Revision as of 09:57, 7 September 2005 (view source)Jola (Talk | contribs)← Older edit Latest revision as of 09:59, 7 September 2005 (view source)Jola (Talk | contribs) Line 9: Line 9: - Where $T$ is a long enough time to average out the typical fluctuations in $\Phi$. + Where $T$ is a long enough time to average out the fluctuations in $\Phi$. - Reynolds averaging is often used in fluid dynamics to separate turbulent fluctuations from the mean-flow. The term "Reynolds averaging" originates from [[Osborne Reynolds]], who was the first to use this type of averaging in fluid dynamics. + Reynolds averaging is often used in fluid dynamics to separate turbulent fluctuations from the mean-flow. The term Reynolds averaging originates from [[Osborne Reynolds]], who was the first to use this type of averaging in fluid dynamics.

## Latest revision as of 09:59, 7 September 2005

Reynolds averaging refers to the process of averaging a variable or an equation in time. Let $\Phi$ be any dependent variable that varies in time. This variable can be decomposed into a fluctuating part, $\Phi'$ and an average part $\overline{\Phi}$ in the following way:

 $\overline{\Phi} \equiv \frac{1}{T} \int_T \Phi(t) dt$ (1) $\Phi' \equiv \Phi - \overline{\Phi}$

Where $T$ is a long enough time to average out the fluctuations in $\Phi$.

Reynolds averaging is often used in fluid dynamics to separate turbulent fluctuations from the mean-flow. The term Reynolds averaging originates from Osborne Reynolds, who was the first to use this type of averaging in fluid dynamics.