# Structural modeling

(Difference between revisions)
 Revision as of 22:06, 24 June 2013 (view source)Media777 (Talk | contribs)← Older edit Revision as of 22:08, 24 June 2013 (view source)Media777 (Talk | contribs) Newer edit → Line 20: Line 20: :$:[itex] \tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij} \tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij} +$ + + Dynamic structure models + :$+ \tau_{ij} = 2k_{sgs} \frac{L_{ij}}{L_{kk}} +$ + or + :$+ \tau_{ij} = 2k_{sgs} \frac{G_{ij}}{G_{kk}}$ [/itex]

## Revision as of 22:08, 24 June 2013

Those that use the physical hypothesis of scale similarity

$\tau_{ij} = L_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}$

Those derived by formal series expansions

$\tau_{ij} = G_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}$

Mixed models, which are based on linear combinations of the eddy-viscosity and structural types

$\tau_{ij} = G_{ij}-2\nu_{sgs} S_{ij}$

or

$\tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij}$

Dynamic structure models

$\tau_{ij} = 2k_{sgs} \frac{L_{ij}}{L_{kk}}$

or

$\tau_{ij} = 2k_{sgs} \frac{G_{ij}}{G_{kk}}$