# Structural modeling

(Difference between revisions)
 Revision as of 20:19, 25 June 2013 (view source)Media777 (Talk | contribs)← Older edit Revision as of 22:27, 25 June 2013 (view source)Media777 (Talk | contribs) Newer edit → Line 30: Line 30: \tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right) \tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right) [/itex] [/itex] + The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008) + :$\frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}} - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k_{\rm sgs}}{\partial x_{j}} \right) +$ + or use a zero-equation procedure (Lu and Porte-Agel, 2010) to predict the SGS kinetic energy. == References == == References ==

## Revision as of 22:27, 25 June 2013

1. Those that use the physical hypothesis of scale similarity (Bardina et. al., 1980)

$\tau_{ij} = L_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}$

2. Those derived by formal series expansions (Clark et. al., 1979)

$\tau_{ij} = G_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}$

3. Mixed models, which are based on linear combinations of the eddy-viscosity and structural types

$\tau_{ij} = G_{ij}-2\nu_{sgs} S_{ij}$

or

$\tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij}$

4. Dynamic structure models, which divide the modeled SGS stress into a model for the SGS kinetic energy and a model for the structure of the SGS stress tensor (relative weights of each of the components) (Pomraning and Rutland, 2002; Lu et. al. 2007, 2008; Lu and Porte-Agel, 2010)

$\tau_{ij} = 2k_{sgs} \left(\frac{L_{ij}}{L_{kk}}\right)$

or

$\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)$

The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008)

$\frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}} - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k_{\rm sgs}}{\partial x_{j}} \right)$

or use a zero-equation procedure (Lu and Porte-Agel, 2010) to predict the SGS kinetic energy.

## References

• J. Bardina and J. H. Ferziger and W. C. Reynolds (1980), "Improved subgrid scale models for large eddy simulation", AIAA Paper No. 80-1357.
• R. A. Clark and J. H. Ferziger and W. C. Reynolds (1979), "Evaluation of subgrid-scale models using an accurately simulated turbulent flow", J. Fluid Mech..
• E. Pomraning and C. J. Rutland (2002), "Dynamic one-equation nonviscosity large-eddy simulation model", AIAA J..
• H. Lu and C. J. Rutland and L. M. Smith (2007), "A priori tests of one-equation LES modeling of rotating turbulence", J. Turbul..
• H. Lu and C. J. Rutland and L. M. Smith (2008), "A posteriori tests of one-equation LES modeling of rotating turbulence", Int. J. Mod. Phys. C.
• H. Lu and F. Porte-Agel (2010), "A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer", Phys. Fluids.