# Wilcox's k-omega model

### From CFD-Wiki

(Difference between revisions)

Line 4: | Line 4: | ||

</math> | </math> | ||

+ | == Turbulence Kinetic Energy == | ||

+ | :<math> | ||

+ | {{\partial k} \over {\partial t}} + U_j {{\partial k} \over {\partial x_j }} = \tau _{ij} {{\partial U_i } \over {\partial x_j }} - \beta ^* k\omega + {\partial \over {\partial x_j }}\left[ {\left( {\nu + \sigma ^* \nu _T } \right){{\partial k} \over {\partial x_j }}} \right] | ||

+ | </math> | ||

+ | |||

+ | == Specific Dissipation Rate== | ||

+ | :<math> | ||

+ | {{\partial \omega } \over {\partial t}} + U_j {{\partial \omega } \over {\partial x_j }} = \alpha {\omega \over k}\tau _{ij} {{\partial U_i } \over {\partial x_j }} - \beta \omega ^2 + {\partial \over {\partial x_j }}\left[ {\left( {\nu + \sigma \nu _T } \right){{\partial \omega } \over {\partial x_j }}} \right] | ||

+ | </math> | ||

## Revision as of 10:25, 26 September 2005

## Kinematic Eddy Viscosity

## Turbulence Kinetic Energy

## Specific Dissipation Rate