# Implementation of plastic deformation in Ansys

 Register Blogs Members List Search Today's Posts Mark Forums Read

 December 1, 2021, 04:26 Implementation of plastic deformation in Ansys #1 New Member   Mitja Join Date: Nov 2017 Posts: 3 Rep Power: 8 Hi, TLDR: I need you to solve a plastic deformation case for me and send me the results. The full story: I have implemented the von Mises plasticity model with non-linear isotropic hardening in two environments: FreeFem++ and Abaqus. While comparing the results I discovered that they don't really match as much as I would like them too. For example the displacements are completely off ... For that reason, I would like a third "independent" solution of the same problem, which could perhaps give me more insight and ease down my debugging. However, I have never used Ansys and neither do I have the licence for Ansys. Since I am not intending to become a regular user, I wanted to find a kind person that would solve two simple cases for me and send me the results in VTK or TXT format or whatever format I can open in Paraview or Python. Such help would be highly appreciated. I know nobody wants to solve my problems instead of me. But please consider that I have already solved the same problem in FreeFem++ and Abaqus and that it is of extreme importance that the third solution is from a third person - somebody who knows Ansys well. So, if you are so kind, please solve the following case for me:Take a simple 10x10x10 cube and mesh it as a 3D model using small cubes, preferably 20 per dimension, i.e. approximately 8000 elements in total. Young modulus is 2230 and Poisson ratio is 0.4 At plate z = 0, fix the displacements to 0 in all dimensions, i.e. u(z=0) = (0,0,0) Please be so kind and solve this for two different boundary conditions: - one results file, where: the displacement in x direction at plate z = 10 is defined, i.e. u(z=10) = (-0.5, undefined, undefined). - another results file, where: pressure (p = 30) is applied to plate x = 10. Both cases lead to a similar steady state, but not the same. The hardening curve is given in table as: The biggest thanks I could ever give to the one that helps me. I will only need stress tensor and displacement vectors along path (0,0,0) -> (10, 10, 10). But whatever is easier for you, will do the job. Last edited by Dirichlet; December 1, 2021 at 08:23.

 December 1, 2021, 09:46 #2 Senior Member   Erik Join Date: Feb 2011 Location: Earth (Land portion) Posts: 1,173 Rep Power: 23 Include Units in your request.

 December 1, 2021, 09:51 #3 New Member   Mitja Join Date: Nov 2017 Posts: 3 Rep Power: 8 Oh, absolutely! Milimeters and MPa. So 10mm X 10 mm X 10 mm, p = 30 MPa, Young modulus = 2230 MPa.

 December 7, 2021, 12:40 #4 Senior Member   Erik Join Date: Feb 2011 Location: Earth (Land portion) Posts: 1,173 Rep Power: 23 I solved this using both linear and Non-linear geometry since you did not specify: Results are at 21 points along the vector (0,0,0)mm -> (10, 10, 10)mm Specified Displacement: Small Deformation Theory Length Along Vector von-Mises displacement X displacement Y displacement Z (mm) (MPa) (mm) (mm) (mm) 0.00E+00 7.48E+01 0.00E+00 0.00E+00 0.00E+00 7.87E-01 6.35E+01 -2.18E-02 -2.47E-02 -2.19E-02 1.57E+00 5.88E+01 -3.20E-02 -2.58E-02 -2.86E-02 2.36E+00 5.49E+01 -4.34E-02 -2.30E-02 -3.46E-02 3.15E+00 5.16E+01 -5.67E-02 -1.88E-02 -3.76E-02 3.94E+00 4.89E+01 -7.24E-02 -1.42E-02 -3.76E-02 4.72E+00 4.61E+01 -8.97E-02 -9.96E-03 -3.55E-02 5.51E+00 4.36E+01 -1.09E-01 -6.34E-03 -3.20E-02 6.30E+00 4.21E+01 -1.29E-01 -3.49E-03 -2.69E-02 7.09E+00 4.11E+01 -1.51E-01 -1.50E-03 -1.99E-02 7.87E+00 4.03E+01 -1.74E-01 -3.56E-04 -1.09E-02 8.66E+00 3.95E+01 -1.98E-01 -7.47E-14 3.28E-13 9.45E+00 3.86E+01 -2.24E-01 -3.07E-04 1.28E-02 1.02E+01 3.74E+01 -2.50E-01 -1.12E-03 2.75E-02 1.10E+01 3.58E+01 -2.76E-01 -2.25E-03 4.37E-02 1.18E+01 3.40E+01 -3.03E-01 -3.53E-03 6.15E-02 1.26E+01 3.17E+01 -3.31E-01 -4.79E-03 8.05E-02 1.34E+01 2.88E+01 -3.58E-01 -5.89E-03 1.01E-01 1.42E+01 2.53E+01 -3.86E-01 -6.70E-03 1.22E-01 1.50E+01 2.10E+01 -4.14E-01 -7.13E-03 1.45E-01 1.57E+01 1.57E+01 -4.43E-01 -7.05E-03 1.68E-01 1.65E+01 9.21E+00 -4.71E-01 -6.35E-03 1.93E-01 1.73E+01 7.35E-01 -5.00E-01 -4.81E-03 2.19E-01 Specified Displacement: Large Deformation Theory Length Along Vector von-Mises displacement X displacement Y displacement Z (mm) (MPa) (mm) (mm) (mm) 0.00E+00 7.49E+01 0.00E+00 0.00E+00 0.00E+00 7.87E-01 6.33E+01 -2.02E-02 -2.42E-02 -2.12E-02 1.57E+00 5.84E+01 -3.01E-02 -2.54E-02 -2.77E-02 2.36E+00 5.45E+01 -4.15E-02 -2.27E-02 -3.35E-02 3.15E+00 5.11E+01 -5.50E-02 -1.85E-02 -3.64E-02 3.94E+00 4.83E+01 -7.09E-02 -1.39E-02 -3.62E-02 4.72E+00 4.54E+01 -8.84E-02 -9.70E-03 -3.43E-02 5.51E+00 4.31E+01 -1.08E-01 -6.12E-03 -3.08E-02 6.30E+00 4.17E+01 -1.28E-01 -3.32E-03 -2.57E-02 7.09E+00 4.09E+01 -1.50E-01 -1.37E-03 -1.88E-02 7.87E+00 4.02E+01 -1.74E-01 -2.88E-04 -1.00E-02 8.66E+00 3.95E+01 -1.99E-01 -6.12E-14 6.79E-04 9.45E+00 3.87E+01 -2.24E-01 -3.85E-04 1.32E-02 1.02E+01 3.75E+01 -2.50E-01 -1.28E-03 2.75E-02 1.10E+01 3.61E+01 -2.77E-01 -2.52E-03 4.33E-02 1.18E+01 3.43E+01 -3.05E-01 -3.90E-03 6.05E-02 1.26E+01 3.20E+01 -3.32E-01 -5.29E-03 7.89E-02 1.34E+01 2.92E+01 -3.60E-01 -6.51E-03 9.84E-02 1.42E+01 2.57E+01 -3.88E-01 -7.46E-03 1.19E-01 1.50E+01 2.13E+01 -4.16E-01 -8.01E-03 1.40E-01 1.57E+01 1.58E+01 -4.45E-01 -8.04E-03 1.63E-01 1.65E+01 8.74E+00 -4.73E-01 -7.43E-03 1.86E-01 1.73E+01 3.09E+00 -5.00E-01 -6.06E-03 2.09E-01 30MPa Pressure Small Deformation Theory Length Along Vector von-Mises displacement X displacement Y displacement Z (mm) (MPa) (mm) (mm) (mm) 0.00E+00 8.22E+01 0.00E+00 0.00E+00 0.00E+00 7.87E-01 6.91E+01 -4.36E-02 -3.69E-02 -3.52E-02 1.57E+00 6.52E+01 -6.84E-02 -3.30E-02 -4.18E-02 2.36E+00 6.20E+01 -9.64E-02 -2.66E-02 -4.54E-02 3.15E+00 5.89E+01 -1.27E-01 -2.06E-02 -4.48E-02 3.94E+00 5.67E+01 -1.59E-01 -1.55E-02 -4.15E-02 4.72E+00 5.47E+01 -1.92E-01 -1.12E-02 -3.58E-02 5.51E+00 5.28E+01 -2.25E-01 -7.76E-03 -2.77E-02 6.30E+00 5.09E+01 -2.58E-01 -5.07E-03 -1.72E-02 7.09E+00 4.90E+01 -2.91E-01 -2.99E-03 -4.44E-03 7.87E+00 4.64E+01 -3.24E-01 -1.36E-03 1.03E-02 8.66E+00 4.32E+01 -3.56E-01 4.65E-13 2.67E-02 9.45E+00 4.06E+01 -3.88E-01 1.25E-03 4.45E-02 1.02E+01 3.76E+01 -4.19E-01 2.54E-03 6.35E-02 1.10E+01 3.51E+01 -4.50E-01 4.00E-03 8.35E-02 1.18E+01 3.31E+01 -4.81E-01 5.71E-03 1.04E-01 1.26E+01 3.14E+01 -5.11E-01 7.77E-03 1.26E-01 1.34E+01 3.02E+01 -5.41E-01 1.02E-02 1.48E-01 1.42E+01 2.95E+01 -5.70E-01 1.31E-02 1.71E-01 1.50E+01 2.95E+01 -5.99E-01 1.64E-02 1.94E-01 1.57E+01 2.97E+01 -6.28E-01 2.02E-02 2.17E-01 1.65E+01 3.00E+01 -6.57E-01 2.42E-02 2.40E-01 1.73E+01 3.00E+01 -6.86E-01 2.83E-02 2.64E-01 30 MPa Pressure Large Deformation Theory Length Along Vector von-Mises displacement X displacement Y displacement Z (mm) (MPa) (mm) (mm) (mm) 0.00E+00 8.44E+01 0.00E+00 0.00E+00 0.00E+00 7.87E-01 7.00E+01 -4.42E-02 -3.96E-02 -3.67E-02 1.57E+00 6.61E+01 -7.22E-02 -3.53E-02 -4.35E-02 2.36E+00 6.34E+01 -1.04E-01 -2.84E-02 -4.76E-02 3.15E+00 6.08E+01 -1.37E-01 -2.19E-02 -4.76E-02 3.94E+00 5.84E+01 -1.72E-01 -1.63E-02 -4.46E-02 4.72E+00 5.61E+01 -2.08E-01 -1.17E-02 -3.90E-02 5.51E+00 5.39E+01 -2.45E-01 -8.09E-03 -3.08E-02 6.30E+00 5.17E+01 -2.81E-01 -5.26E-03 -2.01E-02 7.09E+00 4.96E+01 -3.16E-01 -3.09E-03 -7.00E-03 7.87E+00 4.70E+01 -3.50E-01 -1.39E-03 8.06E-03 8.66E+00 4.37E+01 -3.84E-01 1.48E-13 2.48E-02 9.45E+00 4.11E+01 -4.17E-01 1.27E-03 4.28E-02 1.02E+01 3.80E+01 -4.51E-01 2.56E-03 6.21E-02 1.10E+01 3.54E+01 -4.83E-01 4.00E-03 8.23E-02 1.18E+01 3.33E+01 -5.16E-01 5.69E-03 1.03E-01 1.26E+01 3.16E+01 -5.48E-01 7.71E-03 1.25E-01 1.34E+01 3.03E+01 -5.79E-01 1.01E-02 1.48E-01 1.42E+01 2.96E+01 -6.11E-01 1.30E-02 1.70E-01 1.50E+01 2.94E+01 -6.42E-01 1.63E-02 1.94E-01 1.57E+01 2.97E+01 -6.73E-01 2.01E-02 2.17E-01 1.65E+01 2.99E+01 -7.03E-01 2.42E-02 2.41E-01 1.73E+01 3.17E+01 -7.34E-01 2.86E-02 2.65E-01