CFD Online Logo CFD Online URL
Home > Forums > CFX

Importance of droplet size

Register Blogs Members List Search Today's Posts Mark Forums Read

LinkBack Thread Tools Display Modes
Old   December 10, 2007, 03:25
Default Importance of droplet size
Posts: n/a
Hi guys,

I'm simulating an incompressible flow with liquid droplets in a continuous vapor flowing in a pipe. There are 2inlets located on the same plane. The inner inlet is a mixture of liquid and gas while the other inlet is pure gas(gas is 2x faster than droplet). I initially simulated a 3D case and the results have shown that the pressure recovery is dependent on droplet size. In my case, changing the droplet size from 10micromm to 20micro gives a 3.5 kPa difference in pressure recovery. The difference decreases as the droplet size increases.I found similar results when I used 2D axisymmetric case. However, for a 1D fortran program (journal reference), the results show that droplet size has little effect on pressure recovery compared to 3D and 2D. The difference in 1D is about 0.5 kPa per 10micromm increase in droplet size.I know that the other components (y&z)are the main cause of this phenomena but I find it hard to further explain it theoretically. I really need some insights guys. PLEASE HELP ME! Big Thanks!-itchie
  Reply With Quote

Old   December 10, 2007, 17:17
Default Re: Importance of droplet size
Glenn Horrocks
Posts: n/a

Have a close read of the drag law models in the CFX manual. Make sure you are using the correct drag model for the droplets. Also check whether a distribution of droplet sizes is required or if a single droplet size is adequate.

Glenn Horrocks
  Reply With Quote

Old   December 13, 2007, 03:01
Default Re: Importance of droplet size
Posts: n/a
Thank you so much for your reply Glenn! I used Schiller Nauman drag model. To consider your advise, I used a constant drag coefficient (for both CFX and FORTRAN) but I found similar relationship.The droplet size is still important for CFX unlike in 1D fortran.I used constant droplet size and the CFX result approaches the experimental value as the droplet size increases. Also, I made a mesh 1element thick with 3 nodes (almost "1D") along the radial direction and the result shows that droplet size is not important (similar to 1D fortran). I want to have theoretical explanation and this is just a try... I compared the velocity and pressure profiles for both cfx and fortran program.In FORTRAN, it shows that droplet velocity profile is nearly independent of the droplet size. However in CFX, there is a significant difference in droplet velocity profile as the droplet size changes. In CFX, the vapor can give more acceleration to smaller droplets.The larger kinetic energy absorbed by the droplet can raise the pressure of the gas more. Also, I only used continuity imbalance as a convergence criteria for 1D fortran. Do you I think I must also include momentum imbalance check? My explanation is just a try. I would really appreciate any insights from you guys.THANKS A LOT!
  Reply With Quote


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Similar Threads
Thread Thread Starter Forum Replies Last Post
Superlinear speedup in OpenFOAM 13 msrinath80 OpenFOAM Running, Solving & CFD 18 March 3, 2015 06:36
critical error during installation of openfoam Fabio88 OpenFOAM Installation 21 June 2, 2010 03:01
OF 1.6 | Ubuntu 9.10 (64bit) | GLIBCXX_3.4.11 not found piprus OpenFOAM Installation 22 February 25, 2010 14:43
Phase locked average in run time panara OpenFOAM 2 February 20, 2008 15:37
fluent add additional zones for the mesh file SSL FLUENT 2 January 26, 2008 12:55

All times are GMT -4. The time now is 00:34.