
[Sponsors] 
Calculating surface roughness correlating with Manning’s n in shallow water model? 

LinkBack  Thread Tools  Display Modes 
December 4, 2012, 01:48 
Calculating surface roughness correlating with Manning’s n in shallow water model?

#1 
New Member
max
Join Date: Oct 2011
Posts: 10
Rep Power: 7 
I have difficulty calculating appropriate surface roughness that correlates with Manning’s n of my model,
I used Eq (3) given in Chapter 12 of v10 of FLOW3D manual, to calculate parameter called ROUGH that correlates with Manning’s n. Manning’s n is known for my simulation. But if I use this ROUGH value in drag coefficient for bottom shear stress in Shallow Water physics of FLOW3D, the simulation does not yield good match. It seems that for good match, the ROUGH value has to be increased more than 100 times the magnitude given by the above equation. The result with default value of 0.0026 is slightly better but still no way close to measured data. Am I using appropriate equation to calculate roughness which correlates Manning’s n into flow model? I used ROUGH as equal to “btmshr” in shallow water physics of FLOW3D. Is this correct? Is there a direct way of inputting Manning’s n value into the FLOW3D model? Any suggestion is highly appreciated. Thank you. 

December 5, 2012, 12:16 

#2 
Senior Member
Jeff Burnham
Join Date: Apr 2010
Posts: 204
Rep Power: 9 
ROUGH is the physical roughness length for 3D solutions and laminar shallow water solutions ONLY. When you convert Manning's n to get ROUGH, and use it in shallow water physics, it underpredicts the drag, as you have observed, and must be adjusted to give an equivalent drag, as you have also observed. in v10.0 and later, you can use a turbulent shallow water model, in which case ROUGH is not applied: instead, a drag coefficient BTMSHR is specified, default value 0.0026. This is not a physical roughness length.
BTMSHR = fDARCY/8 ≈ nMANNING^2 g (Sf/Sb) / (Rh^(1/3) αMANNING^2) fDARCY = D'Arcy friction factor [dimless] nMANNING = Manning's n [ALWAYS s/m^(1/3)] g = constant magnitude of gravitational acceleration [m/s^2 or ft/s^2] Sf = energy gradient (free surface slope) of water [m/m or ft/ft] Sb = bed gradient (bed slope) of water [m/m or ft/ft] Sf/Sb = 1.0 (assumed by Manning's equation) Rh = hydraulic radius (= depth for wide channels, wetted area/wetted perimeter for narrow channels) [m or ft] αMANNING = 1.0 m^(1/3)/m^(1/3) when Rh & g are in m OR αMANNING = 1.486 ft^(1/3)/m^(1/3) when Rh & g are in ft. As you can see, there are different n values for different depths of flow, so the n value and Rh value you use to get BTMSHR must be appropriate for each other AND the flow being modeled. 

Tags 
flow3d, manning's n, shallow water, surface roughness 
Thread Tools  
Display Modes  


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Error : Self intersecting surface mesh, computing intersections & Error : Impossible  velan  Open Source Meshers: Gmsh, Netgen, CGNS, ...  3  October 22, 2015 11:05 
Calculating forces on a nonclosed surface  ScottN  FLUENT  0  March 1, 2011 18:18 
mass flow in is not equal to mass flow out  saii  CFX  2  September 18, 2009 08:07 
How to update polyPatchbs localPoints  liu  OpenFOAM Running, Solving & CFD  6  December 30, 2005 18:27 
sw for 2D free surface shallow water?  Rob Snel  Main CFD Forum  7  August 4, 2000 11:03 