# Problems with Turbulence Decay Calculation

 Register Blogs Members List Search Today's Posts Mark Forums Read

 March 27, 2010, 06:27 Problems with Turbulence Decay Calculation #1 New Member   Join Date: Mar 2010 Posts: 1 Rep Power: 0 Hi there, I've come across a very strange FLUENT behavior when trying to solve a test problem on turbulence decay in 1D incompressible flow. The parameters are simple: we have a 1D flow of incompressible fluid, Rho = 1.225 kg/m3, U = 1 m/s, at the inlet I specify k=0.5, Eps = 0.1 to see how turbulence decays with distance (up to 4 m). There is no patricular reason for choosing the above values, just a test. I specified quite a high value of laminar viscosity (Mu_l =0.01) and obtained successfully a converged solution with k, Eps and Mu_eff decaying with distance. Backward differences are used for convective terms (1st order scheme), standard k-epsilon models, symmetry conditions on side walls, no wall functions required. PROBLEM: I tried to check the converged solution. In this "classic" flow there is no generation, and at convergence three terms must sum up to zero: convection, diffusion, and dissipation. I've exported cell centered data for k, Eps, Mu_eff and tried to estimate "by hand" each term (taking finite-volume style differences) and see if they sum up to zero. Surprisingly, the converged to 10-8 solution does not give this consistency: say, convective term Rho*U*(k(i)-k(i-1))/dX =-0.08152, diffusive term ((k(i+1)-k(i))*Mu_eff(i+1/2)-(k(i)-k(i-1)*Mu_eff(i-1/2))/dX^2 is 0.005464935, Dissipation Rho*Eps = 0.090285. This together gives (Diss + Conv - Diff) = 0.00329614, which is nowhere near to 10-8. (Mu_eff at cell boundaries was estimated by linear interpolation). To put it straight, I dont care for now about physical validity (too high laminar viscosity etc), but trying to figure out - what exactly equation is solved in FLUENT and why its hand calculation is inconsistent with convergence criterion. Any help ot ideas is highly appreciated, perhaps something is wrong in my checks, so please dont hesitate to point my nose to it

 Tags fluent, turbulence decay

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post Eric FLUENT 1 March 7, 2012 05:30 philippose OpenFOAM Running, Solving & CFD 30 August 4, 2010 10:26 max91 CFX 1 July 29, 2008 20:28 Nomad Main CFD Forum 38 March 22, 2004 10:03

All times are GMT -4. The time now is 22:32.