CFD Online Logo CFD Online URL
Home > Forums > General Forums > Main CFD Forum

Accuracy of RANS solution close to sharp edges

Register Blogs Members List Search Today's Posts Mark Forums Read

LinkBack Thread Tools Display Modes
Old   August 28, 2012, 10:11
Default Accuracy of RANS solution close to sharp edges
New Member
Join Date: Aug 2012
Posts: 1
Rep Power: 0
tvd is on a distinguished road
Dear community,

I have a rather general question regarding the resolution of edged geometries by discrete meshes and the corresponding experience in the community.

Some background: I use an academic RANS code (finite volume, unstructured, parallel, multiphase, etc.).

We are in the situation, that we need RANS solutions of quite high quality. By that I don't refer to integral values, but the quality of the flow field close to feature lines / edges that are perpendicular to the main flow direction (like a backward facing step).
In my experience, such features can lead to quite unphysical values in the cells directly adjacent to the edge. When calculating the gradients of the flow field the situation gets even more tricky...

I understand, that even in experiments one would expect rather high gradients in the vicinity of such edges. This remains as some kind of an inherent problem when one tries to resolve the sharp edge in a discrete manner by generating a mesh of finite resolution.

In the recent past, I've tried to figure out how other groups / codes handle this issue. Unfortunately it is quite difficult to find any related information.

I would very much appreciate if someone would like to share her/his experience or can give me a hint where to find related information in the literature.

Best regards, tvd
tvd is offline   Reply With Quote

Old   August 29, 2012, 04:32
Senior Member
sbaffini's Avatar
Paolo Lampitella
Join Date: Mar 2009
Location: Italy
Posts: 824
Blog Entries: 17
Rep Power: 23
sbaffini will become famous soon enoughsbaffini will become famous soon enough
I don't know if i got your point but, my very personal point of view is that it has little sense (if any at all) to look at this very specific flow features at this small geometrical scale when using a RANS/URANS modeling approach, less than ever if your numerical accuracy is typical of RANS/URANS codes.

In my opinion it is the same as looking for a very accurate wall stress when using a wall function approach, it isn't really part of the game.

Besides this, even when using a DNS approach, still remain the problems you mentioned and i think that in some cases there may also be some issues related to the well-posedness of the problem (but more mathematically oriented people can say more on this).
sbaffini is offline   Reply With Quote

Old   August 29, 2012, 07:50
Super Moderator
praveen's Avatar
Praveen. C
Join Date: Mar 2009
Location: Bangalore
Posts: 287
Blog Entries: 6
Rep Power: 11
praveen is on a distinguished road
Even the solution of Poisson equation would have singular behaviour near corners. It obviously does not represent reality. So it may not be worth worrying about this. If you can figure out the singularity analytically, then you can subtract that out and try to compute the remaining nicely behaved part of the solution numerically. I think people have done such things for lid driven cavity problem which also has corner singularities.
praveen is offline   Reply With Quote


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Similar Threads
Thread Thread Starter Forum Replies Last Post
grid dependancy gueynard a. Main CFD Forum 19 June 27, 2014 21:22
ATTENTION! Reliability problems in CFX 5.7 Joseph CFX 14 April 20, 2010 15:45
CFL Condition Matt Umbel Main CFD Forum 14 January 12, 2001 15:34
How good is CFD? kai Main CFD Forum 39 April 7, 2000 12:48
Wall functions Abhijit Tilak Main CFD Forum 6 February 5, 1999 02:16

All times are GMT -4. The time now is 20:16.