CFD Online Discussion Forums (https://www.cfd-online.com/Forums/)
-   Main CFD Forum (https://www.cfd-online.com/Forums/main/)
-   -   Problem with entire domain comprised of split hex cells (https://www.cfd-online.com/Forums/main/179784-problem-entire-domain-comprised-split-hex-cells.html)

 Arzed23 November 7, 2016 09:16

Problem with entire domain comprised of split hex cells

Hello all,

I'm trying to modify my flow domain so it's comprised of both hex and split hex cells. The problem is that no matter what I try, the entire domain will be comprised of hex cells.
Below is an image of my mesh and my snappyHexMeshDict:

flow domain
http://imgur.com/DjQ8jFa

snappyHexMeshDict
Code:

```/*--------------------------------*- C++ -*----------------------------------*\ | =========                |                                                | | \\      /  F ield        | OpenFOAM: The Open Source CFD Toolbox          | |  \\    /  O peration    | Version:  3.0.1                                | |  \\  /    A nd          | Web:      www.OpenFOAM.org                      | |    \\/    M anipulation  |                                                | \*---------------------------------------------------------------------------*/ FoamFile {     version    2.0;     format      ascii;     class      dictionary;     object      snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap            true; addLayers      true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry {     final_validation_top.stl     {         type triSurfaceMesh;         name final_validation_top;     }     final_validation_bot.stl     {         type triSurfaceMesh;         name final_validation_bot;     }     /*refinementBox_1     {         type searchableBox;         min (-0.09 -0.15 0.0); //1 cell to the left         max (0.7 0.12 0.9144); //twice the chord length to the right     }     refinementBox_2     {         type searchableBox;         min (-0.06 -0.12 0.0); //1 cell to the left         max ( 0.65 0.09 0.9144); //twice the chord length to the right     }     refinementBox_3     {         type searchableBox;         min (-0.03 -0.09 0.0); //1 cell to the left         max ( 0.6 0.06 0.9144); //twice the chord length to the right     }*/     refinementBox_1     {         type searchableBox;         min (-0.4572 -0.3048 0.0); //1 cell to the left         max (0.762 0.3048 0.6096); //twice the chord length to the right     }     refinementBox_2     {         type searchableBox;         min (-0.36 -0.24 0.0); //1 cell to the left         max ( 0.74 0.24 0.6096); //twice the chord length to the right     }     refinementBox_3     {         type searchableBox;         min (-0.24 -0.18 0.0); //1 cell to the left         max ( 0.7 0.18 0.6096); //twice the chord length to the right     } }; // Settings for the castellatedMesph generation. castellatedMeshControls {     // Refinement parameters     // ~~~~~~~~~~~~~~~~~~~~~     // If local number of cells is >= maxLocalCells on any processor     // switches from from refinement followed by balancing     // (current method) to (weighted) balancing before refinement.     maxLocalCells 10000000;     // Overall cell limit (approximately). Refinement will stop immediately     // upon reaching this number so a refinement level might not complete.     // Note that this is the number of cells before removing the part which     // is not 'visible' from the keepPoint. The final number of cells might     // actually be a lot less.     maxGlobalCells 200000000;     // The surface refinement loop might spend lots of iterations refining just a     // few cells. This setting will cause refinement to stop if <= minimumRefine     // are selected for refinement. Note: it will at least do one iteration     // (unless the number of cells to refine is 0)     minRefinementCells 10;     // Allow a certain level of imbalance during refining     // (since balancing is quite expensive)     // Expressed as fraction of perfect balance (= overall number of cells /     // nProcs). 0=balance always.     maxLoadUnbalance 0.10;     // Number of buffer layers between different levels.     // 1 means normal 2:1 refinement restriction, larger means slower     // refinement.     nCellsBetweenLevels 3;     // Explicit feature edge refinement     // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     // Specifies a level for any cell intersected by its edges.     // This is a featureEdgeMesh, read from constant/triSurface for now.     features     (         {file "final_validation_top.eMesh"; level 4;}         {file "final_validation_bot.eMesh"; level 4;}     );     // Surface based refinement     // ~~~~~~~~~~~~~~~~~~~~~~~~     // Specifies two levels for every surface. The first is the minimum level,     // every cell intersecting a surface gets refined up to the minimum level.     // The second level is the maximum level. Cells that 'see' multiple     // intersections where the intersections make an     // angle > resolveFeatureAngle get refined up to the maximum level.     refinementSurfaces     {         final_validation_top         {             // Surface-wise min and max refinement level             level (4 4);             // Optional specification of patch type (default is wall). No             // constraint types (cyclic, symmetry) etc. are allowed.         }         final_validation_bot         {             // Surface-wise min and max refinement level             level (4 4);             // Optional specification of patch type (default is wall). No             // constraint types (cyclic, symmetry) etc. are allowed.         }     }     // Resolve sharp angles     resolveFeatureAngle 80; //was 30 by default     // Region-wise refinement     // ~~~~~~~~~~~~~~~~~~~~~~     // Specifies refinement level for cells in relation to a surface. One of     // three modes     // - distance. 'levels' specifies per distance to the surface the     //  wanted refinement level. The distances need to be specified in     //  descending order.     // - inside. 'levels' is only one entry and only the level is used. All     //  cells inside the surface get refined up to the level. The surface     //  needs to be closed for this to be possible.     // - outside. Same but cells outside.     refinementRegions     {         refinementBox_1         {             mode inside;             levels ((1.0 1));         }         refinementBox_2         {             mode inside;             levels ((1.0 2));         }                 refinementBox_3         {             mode inside;             levels ((1.0 3));         }     }     // Mesh selection     // ~~~~~~~~~~~~~~     // After refinement patches get added for all refinementSurfaces and     // all cells intersecting the surfaces get put into these patches. The     // section reachable from the locationInMesh is kept.     // NOTE: This point should never be on a face, always inside a cell, even     // after refinement.     locationInMesh (-0.001 -0.001 0.001);     // Whether any faceZones (as specified in the refinementSurfaces)     // are only on the boundary of corresponding cellZones or also allow     // free-standing zone faces. Not used if there are no faceZones.     allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls {     //- Number of patch smoothing iterations before finding correspondence     //  to surface     nSmoothPatch 3;     //- Relative distance for points to be attracted by surface feature point     //  or edge. True distance is this factor times local     //  maximum edge length.     tolerance 2.0;     //- Number of mesh displacement relaxation iterations.     nSolveIter 30;     //- Maximum number of snapping relaxation iterations. Should stop     //  before upon reaching a correct mesh.     nRelaxIter 5;     // Feature snapping         //- Number of feature edge snapping iterations.         //  Leave out altogether to disable.         nFeatureSnapIter 10;         //- Detect (geometric only) features by sampling the surface         //  (default=false).         implicitFeatureSnap false;         //- Use castellatedMeshControls::features (default = true)         explicitFeatureSnap true;         //- Detect points on multiple surfaces (only for explicitFeatureSnap)         multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls {     // Are the thickness parameters below relative to the undistorted     // size of the refined cell outside layer (true) or absolute sizes (false).     relativeSizes false;     // Per final patch (so not geometry!) the layer information     layers     {             final_validation_top.stl             {                 nSurfaceLayers 20;             }             final_validation_bot.stl             {                 nSurfaceLayers 20;             }     }     // Expansion factor for layer mesh     expansionRatio 1.1;     // Wanted thickness of final added cell layer. If multiple layers     // is the thickness of the layer furthest away from the wall.     // Relative to undistorted size of cell outside layer.     // See relativeSizes parameter.     finalLayerThickness 0.003;     // Minimum thickness of cell layer. If for any reason layer     // cannot be above minThickness do not add layer.     // Relative to undistorted size of cell outside layer.     minThickness 0.00015;     // If points get not extruded do nGrow layers of connected faces that are     // also not grown. This helps convergence of the layer addition process     // close to features.     // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)     nGrow 0;     // Advanced settings     // When not to extrude surface. 0 is flat surface, 90 is when two faces     // are perpendicular     featureAngle 60;     // At non-patched sides allow mesh to slip if extrusion direction makes     // angle larger than slipFeatureAngle.     slipFeatureAngle 30;     // Maximum number of snapping relaxation iterations. Should stop     // before upon reaching a correct mesh.     nRelaxIter 3;     // Number of smoothing iterations of surface normals     nSmoothSurfaceNormals 1;     // Number of smoothing iterations of interior mesh movement direction     nSmoothNormals 3;     // Smooth layer thickness over surface patches     nSmoothThickness 10;     // Stop layer growth on highly warped cells     maxFaceThicknessRatio 0.5;     // Reduce layer growth where ratio thickness to medial     // distance is large     maxThicknessToMedialRatio 0.3;     // Angle used to pick up medial axis points     // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x.     minMedianAxisAngle 90;     // Create buffer region for new layer terminations     nBufferCellsNoExtrude 0;     // Overall max number of layer addition iterations. The mesher will exit     // if it reaches this number of iterations; possibly with an illegal     // mesh.     nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls {     #include "meshQualityDict"     // Advanced     //- Number of error distribution iterations     nSmoothScale 4;     //- Amount to scale back displacement at error points     errorReduction 0.75; } // Advanced // Write flags writeFlags (     scalarLevels     layerSets     layerFields    // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* //```
Would anyone be able to steer me in the right direction? Sorry if I'm spamming the forum!

Thanks guys

 Arzed23 November 7, 2016 23:01

Turns out all I had to to was untick 'Triangulate the slice' in ParaView! It was all just a visualization issue, my domain is indeed composed of hex and split hex.

 All times are GMT -4. The time now is 14:07.