# turbulence in turbulence

 Register Blogs Members List Search Today's Posts Mark Forums Read

 June 6, 2000, 07:01 turbulence in turbulence #1 ram Guest   Posts: n/a Sponsored Links hi .. i am a novice inCFD.. i am modelling flow using k-e model for turbulence. in the standard k-e model equations( 2D), how can one integrate the rate of production of k or e terms over the control volume. i am integrating FVintegration over 2D space? 2) what can one take the relation for mixing length for flow over variable x-area with many internal obstructions? 3)we have two different k-e model equations for low Re and high Re. how high or low should be this Re value for the use of respective equations?

 June 6, 2000, 09:43 Re: turbulence in turbulence #2 John C. Chien Guest   Posts: n/a (1). The volume is always 3-D, so, make the thickness equal to unit thickness. (2). If you are using mixing length, you need to know the distribution of it in the flow field. You can specify the mixing length distribution or you can use a model to calculate it. (that is your job) (3). As long as the universal log-law portion of the velocity profile exists, you can always use the high Reynolds number model.(sublayer region excluded) (4). You can always use the low Reynolds number model for the whole flow field, any Reynolds number. So, you can not use the high Reynolds number model for the laminar and the transitional flow range. (it is the flow behavior associated with the Reynolds number, not the value of the Reynolds number itself.)

 June 7, 2000, 03:18 Re: turbulence in turbulence #3 Jonas Bredberg Guest   Posts: n/a Hi, low-Re and high-Re turbulence models could be a bit confusing a first. This Reynolds number is not related to the bulk Reynolds number, but rather a local Reynolds number. Generally a low-Re turbulence model needs to resolve the flowfield even in the viscous sublayer, while a high-Re turbulence model is satisfied with placing the first interior calculation node in the logarithmic layer. The different regions are normally distinguished using a normalised wall distance, y^+=yu_{\tau}/\nu, where u_{\tau} is the friction velocity (u_{\tau}=\sqrt(\tau_w/\rho), \tau_w is the wall friction), y is the wall normal distance, and \nu being the kinematic viscosity. The viscous sublayer is below y^+=5, and using a low-Re turbulence model you need a number of nodes in this region, with the first below y^+=1. The logarithmic region starts at around y^+=30. Regards Jonas

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post Mohsin FLUENT 2 October 3, 2016 14:18 Eric FLUENT 1 March 7, 2012 05:30 Wen Long Main CFD Forum 3 May 15, 2009 09:52 Chaoqun Liu Main CFD Forum 0 September 26, 2008 17:15