# Chebyshev grid

 User Name Remember Me Password
 Register Blogs Members List Search Today's Posts Mark Forums Read

 February 7, 2002, 22:44 Chebyshev grid #1 Annie Guest   Posts: n/a Sponsored Links Dear all, I am using chebyshev spectral method to sovle PDE. The computation domain is taken [a,b]. I use a uniform gird in physical domain. I map this mesh into [-1,1] with chebyshev grid when I calculate the derivatives. But it doesn't work. I have checked my program many times. Now I doubt whether this transformation can not be applied in the Chebyshev spectral method. But it is reasonable mathematically. If anyone give some suggestions to me I will appreciate very much. Thanks a lot! Annie

 February 8, 2002, 12:05 Re: Chebyshev grid #2 Patrick Godon Guest   Posts: n/a Dear Annie, While you map say [a,b] onto [-1,+1] you actually make a transformation of coordinates. So if y goes from a to b, x will go from -1 to +1. And you have now y(x). where y(x)=a*(1-x)/2 + b*(1+x)/2 such that y(x) = x*(b-a)/2 +a/2 +b/2 then when you derivate y, you must use the chain derivative rule. df/dx = df/dy*dy/dx or df/dy= (df/dx)/(dy/dx) where df/dx is the chebyshev derivative of the function f expanded as a series of chebyshev polynomials. in this case dy/dx= (b-a)/2 Another concern might be the boundary conditions, since the Spectral Methods are extremely sensitive to (wrong) boundary conditions. So if you did use the derivative chaine rule and it does not work, you might be doing something wrong with the boundary conditions. The boundary conditions have to be imposed on the characteristic variables of the flow, and do not have to be superimposed (i.e. for a first derivative in space, use one BC a one boundary only; for a second derivative equation use one BC at each boundary, etc..). I hope this help. Do no hesitate to post more if you experience any trouble. Cheers, Patrick

 February 8, 2002, 12:23 Re: Chebyshev grid #3 Patrick Hanley, Ph.D. Guest   Posts: n/a Annie, Are you using Gauss-Lobatto points or a similar distribution? This would produce the desired accuracy. Regards, Patrick Hanley, Ph.D. Aerodynamics Software http://www.hanleyinnovations.com

 February 8, 2002, 22:13 Re: Chebyshev grid #4 Annie Guest   Posts: n/a Dear Godon and Hanley, Thank you for your kind help! I do use Gauss-Lobatto points. I need a uniform distribution of nodes in x in physical domain which is very important for me to go on my processure further. The mapping used by me is y=(-2/pi*acos(x)+1)*(b-a)/2+(a+b)/2 if x belongs to [-1,1]. Unfortunately, dy/dx at the boundary is singular. It exhibits the well-known Runge phenomenon. In fact, I don't know why this phenomenon exists. I also don't know whether there is a good thansformation formulae which can avoid this phenomenon while help me obtain a uniform grid in physical domain. Thank you again. Annie

 February 11, 2002, 08:00 Re: Chebyshev grid #5 Raj Bissessur Guest   Posts: n/a If you check the transformation, make sure you have the Jacobian and the metrics right. If not, you are certain to obtain wrong answers. If you want I have the MIT subroutines for calculating the Gauss-Lobatto-Legendre quadrature points and weights. They are easy to use and quite frankly will save you a lot of time and trouble. They are written in Fortran, so let me know if you wish to have them. I used them for a simple PDE and then in a 2D NS calculation. But reading from what the other guys have replied to you, their suggestion seem plausible and the right way to go. All the best,.

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post mbecker OpenFOAM Running, Solving & CFD 1 October 18, 2013 10:16 albcem OpenFOAM 0 May 5, 2009 14:17 calogero FLUENT 3 June 4, 2003 08:32 Art Stretton Phoenics 5 April 2, 2002 05:59 Hans Klaufus CFX 1 June 28, 2000 16:43