lost.identity 
October 6, 2010 09:54 
1D spherical finite volume discretisation
I'm trying to discretise the conservative equations using FVM for a 1D spherical geometry (i.e. spherical symmetry).
After applying the Gaus's theorem I get the following for spatial discretisation of the diffusive terms
I know that for 1D Cartesian the face area vector is simply where i is the unit vector in the xdirection.
However, what will be the face area vector for a spherical geometry? Surely it can't just be the unit vector.
I know that the area element in spherical coordinates is given by
symbol. So in 1D can I assume it to be just r^2?
Thanks.
