CFD Online Logo CFD Online URL
Home > Forums > Main CFD Forum

Pole condition in cylindrical coordinates

Register Blogs Members List Search Today's Posts Mark Forums Read

LinkBack Thread Tools Display Modes
Old   July 14, 2005, 04:15
Default Pole condition in cylindrical coordinates
Posts: n/a
I am trying to write a CFD code for incompressible, transient laminar flow of water insider a cylinder vessel subjected to microwave heating. The model is assuming that the thermophysical properties are temperature-dependent. The temperature is expected to rise from 300 K to around 400 K.

I am actually facing two problems:

1. Is the Boussinesq approximation applicable in this case? What I have understood from the literature (mostly from the Gray and Giorgini paper) that for adopting the Boussinesq approx. the temperature difference must not exceed 20 K for air and 2 K for water. Also, variable property effects in the governing equations must be neglected, except for the density where it appears in the gravitational body force terms in the momentum equations. Is it correct or not?

2. I have discretised the complete Navier-Stokes equations using finite difference method. It seems pretty fine. However, at the pole I am having a problem with discretising the Newtonian stress tensor, most precisely with the term \tau_{t\theta} which is singular at the pole. There is a formula for this term (at the pole) in the paper "Fully conservative Finite Difference Scheme in Cylindrical Coordinates for Incompressible Flow Simulations" by Morinishi, Vasilyev and Ogi (equation 37). The authors used L'Hopital's rule to remove the singularity. However, when I applied this formula to my code, the results are incorrect. I have checked the implementation of my codes several times and didn't see any programming error.

Could anyone helped me out please? I hope my explanation is clear. Thank you.

  Reply With Quote

Old   July 14, 2005, 06:17
Default Re: Pole condition in cylindrical coordinates
Posts: n/a
Try dicretezing using finite volume. One face lying in the pole is inifneitly thin and got no surface, so the terms drop out. Use the BC condition PHI(angle)=PHI(angle+PI), I think is written in the Mosihini paper as well. Then compute a velocity at the pole in x,y (singel valued) and then convert it to r,angle in each node/cell. This will introudce a small error of non-conservation which can be importnat if you use higher order accuarcy but it should work fine if you use second order even for LES and compressibel flow.

  Reply With Quote

Old   July 15, 2005, 03:17
Default Re: Pole condition in cylindrical coordinates
Posts: n/a
U will face the singularity problem on center only for radial momentum equation (provided if ur grid is staggerred). The simple way to deal with it is that u dont discretize this r-momentum eqn at the center...rather, obtain the radial velocity at the center by interpolation using the adjacent cells. This the way wat I implemented in my code n it is working fine... The way u r dealing with the singalurity problem should produce more accurate result as claimed my the paper u mentioned...but I dont know y r u getting wrong results...I again guess it is bcoz of some discretization/implementation error...

However, I am observing relatively high value of divergence at the boundary cells where the ghost cell velues are in use....if u have any idea to get rid of it, please let me know.
  Reply With Quote


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Similar Threads
Thread Thread Starter Forum Replies Last Post
working in cylindrical coordinates in fluent Randheer Yadav FLUENT 2 January 18, 2015 17:25
Wall boundary condition in cylindrical co-ordinate shekharc Main CFD Forum 3 December 2, 2009 09:20
cylindrical or rectangular coordinates Maldoror ANSYS Meshing & Geometry 0 October 10, 2009 21:09
velocity components in cylindrical coordinates iperten CFX 2 March 31, 2009 08:22
Cylindrical coordinates Nish CFX 1 May 3, 2000 03:01

All times are GMT -4. The time now is 23:06.