CFD Online Discussion Forums

CFD Online Discussion Forums (https://www.cfd-online.com/Forums/)
-   OpenFOAM Meshing & Mesh Conversion (https://www.cfd-online.com/Forums/openfoam-meshing/)
-   -   [snappyHexMesh] Error with a turbine mesh with SnappyHexMesh (https://www.cfd-online.com/Forums/openfoam-meshing/156858-error-turbine-mesh-snappyhexmesh.html)

DOliveira July 14, 2015 05:41

Error with a turbine mesh with SnappyHexMesh
 
Hello! I'm quite new at working with OpenFoam and I'm having some errors that I believe are caused by my mesh. I'm trying to model a running turbine using snappyHexMesh and posterior to that pimpleDyMFoam.
The error that I have is that the time steps are too small:

--> FOAM FATAL IO ERROR:
[0] wrong token type - expected Scalar, found on line 0 the word 'nan'
[0]
[0] file: /work/Daniela/Turbine/readyToRun/processor0/system/data.solverPerformance.p at line 0.
[0]
[0] From function operator>>(Istream&, Scalar&)
[0] in file lnInclude/Scalar.C at line 91.
[0]
FOAM parallel run exiting
[0]

Following is my snappyHexMesh dictionary:

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.1.0 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object autoHexMeshDict;
}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers true;


// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{

original.stl
{
type triSurfaceMesh;
name turbine;
}

/* Verfeinerung
{
type searchableBox;
min (-1 -10 -10);
max (6 10 10);
}*/
};



// Settings for the castellatedMesh generation.
castellatedMeshControls
{

// Refinement parameters
// ~~~~~~~~~~~~~~~~~~~~~

// If local number of cells is >= maxLocalCells on any processor
// switches from from refinement followed by balancing
// (current method) to (weighted) balancing before refinement.
maxLocalCells 500000;

// Overall cell limit (approximately). Refinement will stop immediately
// upon reaching this number so a refinement level might not complete.
// Note that this is the number of cells before removing the part which
// is not 'visible' from the keepPoint. The final number of cells might
// actually be a lot less.
maxGlobalCells 2000000;

// The surface refinement loop might spend lots of iterations refining just a
// few cells. This setting will cause refinement to stop if <= minimumRefine
// are selected for refinement. Note: it will at least do one iteration
// (unless the number of cells to refine is 0)
minRefinementCells 0;
maxLoadUnbalance 0.10;

// Number of buffer layers between different levels.
// 1 means normal 2:1 refinement restriction, larger means slower
// refinement.
nCellsBetweenLevels 2;



// Explicit feature edge refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies a level for any cell intersected by its edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.
features
(
/* {
file "someLine.eMesh";
//level 2;
levels ((0.0 2) (1.0 2));
}*/
);



// Surface based refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies two levels for every surface. The first is the minimum level,
// every cell intersecting a surface gets refined up to the minimum level.
// The second level is the maximum level. Cells that 'see' multiple
// intersections where the intersections make an
// angle > resolveFeatureAngle get refined up to the maximum level.

refinementSurfaces
{

original.stl
{
level (1 1);
}

}

resolveFeatureAngle 30;


// Region-wise refinement
// ~~~~~~~~~~~~~~~~~~~~~~

// Specifies refinement level for cells in relation to a surface. One of
// three modes
// - distance. 'levels' specifies per distance to the surface the
// wanted refinement level. The distances need to be specified in
// descending order.
// - inside. 'levels' is only one entry and only the level is used. All
// cells inside the surface get refined up to the level. The surface
// needs to be closed for this to be possible.
// - outside. Same but cells outside.

refinementRegions
{
/*Verfeinerung
{
mode inside;
levels ((1 4));
}*/

}


// Mesh selection
// ~~~~~~~~~~~~~~

// After refinement patches get added for all refinementSurfaces and
// all cells intersecting the surfaces get put into these patches. The
// section reachable from the locationInMesh is kept.
// NOTE: This point should never be on a face, always inside a cell, even
// after refinement.
// This is an outside point locationInMesh (-0.033 -0.033 0.0033);
locationInMesh (-10 -10 10); // Inside point

// Whether any faceZones (as specified in the refinementSurfaces)
// are only on the boundary of corresponding cellZones or also allow
// free-standing zone faces. Not used if there are no faceZones.
allowFreeStandingZoneFaces true;
}



// Settings for the snapping.
snapControls
{
//- Number of patch smoothing iterations before finding correspondence
// to surface
nSmoothPatch 10;

//- Relative distance for points to be attracted by surface feature point
// or edge. True distance is this factor times local
// maximum edge length.
tolerance 1.2;

//- Number of mesh displacement relaxation iterations.
nSolveIter 10;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 3;

//- Highly experimental and wip: number of feature edge snapping
// iterations. Leave out altogether to disable.
nFeatureSnapIter 10;
}



// Settings for the layer addition.
addLayersControls
{
// Are the thickness parameters below relative to the undistorted
// size of the refined cell outside layer (true) or absolute sizes (false).
relativeSizes true;

// Per final patch (so not geometry!) the layer information
layers
{
"turbine.*"
{
nSurfaceLayers 5;
}

}

// Expansion factor for layer mesh
expansionRatio 1.5;


//- Wanted thickness of final added cell layer. If multiple layers
// is the thickness of the layer furthest away from the wall.
// See relativeSizes parameter.
finalLayerThickness 0.8;

//- Minimum thickness of cell layer. If for any reason layer
// cannot be above minThickness do not add layer.
// See relativeSizes parameter.
minThickness 0.001;

//- If points get not extruded do nGrow layers of connected faces that are
// also not grown. This helps convergence of the layer addition process
// close to features.
nGrow 0;


// Advanced settings

//- When not to extrude surface. 0 is flat surface, 90 is when two faces
// make straight angle.
featureAngle 30;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;

// Number of smoothing iterations of surface normals
nSmoothSurfaceNormals 1;

// Number of smoothing iterations of interior mesh movement direction
nSmoothNormals 3;

// Smooth layer thickness over surface patches
nSmoothThickness 10;

// Stop layer growth on highly warped cells
maxFaceThicknessRatio 0.5;

// Reduce layer growth where ratio thickness to medial
// distance is large
maxThicknessToMedialRatio 0.4;

// Angle used to pick up medial axis points
minMedianAxisAngle 130;

// Create buffer region for new layer terminations
nBufferCellsNoExtrude 0;


// Overall max number of layer addition iterations. The mesher will exit
// if it reaches this number of iterations; possibly with an illegal
// mesh.
nLayerIter 50;

// Max number of iterations after which relaxed meshQuality controls
// get used. Up to nRelaxIter it uses the settings in meshQualityControls,
// after nRelaxIter it uses the values in meshQualityControls::relaxed.
nRelaxedIter 20;
}



// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
meshQualityControls
{
//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 60;

//- Max skewness allowed. Set to <0 to disable.
maxBoundarySkewness 20;
maxInternalSkewness 4;

//- Max concaveness allowed. Is angle (in degrees) below which concavity
// is allowed. 0 is straight face, <0 would be convex face.
// Set to 180 to disable.
maxConcave 80;

//- Minimum pyramid volume. Is absolute volume of cell pyramid.
// Set to a sensible fraction of the smallest cell volume expected.
// Set to very negative number (e.g. -1E30) to disable.
minVol 1e-13;

//- Minimum quality of the tet formed by the face-centre
// and variable base point minimum decomposition triangles and
// the cell centre. Set to very negative number (e.g. -1E30) to
// disable.
// <0 = inside out tet,
// 0 = flat tet
// 1 = regular tet
minTetQuality 1e-30;

//- Minimum face area. Set to <0 to disable.
minArea -1;

//- Minimum face twist. Set to <-1 to disable. dot product of face normal
//- and face centre triangles normal
minTwist 0.05;

//- minimum normalised cell determinant
//- 1 = hex, <= 0 = folded or flattened illegal cell
minDeterminant 0.001;

//- minFaceWeight (0 -> 0.5)
minFaceWeight 0.05;

//- minVolRatio (0 -> 1)
minVolRatio 0.01;

//must be >0 for Fluent compatibility
minTriangleTwist -1;

//- if >0 : preserve single cells with all points on the surface if the
// resulting volume after snapping (by approximation) is larger than
// minVolCollapseRatio times old volume (i.e. not collapsed to flat cell).
// If <0 : delete always.
//minVolCollapseRatio 0.5;


// Advanced

//- Number of error distribution iterations
nSmoothScale 4;
//- amount to scale back displacement at error points
errorReduction 0.75;



// Optional : some meshing phases allow usage of relaxed rules.
// See e.g. addLayersControls::nRelaxedIter.
relaxed
{
//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 75;
}
}


// Advanced

// Flags for optional output
// 0 : only write final meshes
// 1 : write intermediate meshes
// 2 : write volScalarField with cellLevel for postprocessing
// 4 : write current intersections as .obj files
debug 0;


// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1E-6;


// ************************************************** *********************** //

Any help you can give me would be great! Thank you so much!
Daniela

alexB July 16, 2015 08:02

Quote:

Originally Posted by DOliveira (Post 555367)
--> FOAM FATAL IO ERROR:
[0] wrong token type - expected Scalar, found on line 0 the word 'nan'
[0]
[0] file: /work/Daniela/Turbine/readyToRun/processor0/system/data.solverPerformance.p at line 0.
[0]
[0] From function operator>>(Istream&, Scalar&)
[0] in file lnInclude/Scalar.C at line 91.
[0]
FOAM parallel run exiting
[0]

I think OpenFoam likes to say that on a place where a scalar is expected there is something else...

Perhaps you change the marked into "level 2;"
Quote:

// Explicit feature edge refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies a level for any cell intersected by its edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.
features
(
/* {
file "someLine.eMesh";
//level 2;
levels ((0.0 2) (1.0 2));
}*/
);
I don't know if it will work... I don't know if it will give you the wished behaviour... so it's just a suggestion. ;)

regards
Alex


All times are GMT -4. The time now is 10:36.