CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM > OpenFOAM Meshing & Mesh Conversion

[snappyHexMesh] Boundary layers on complex curves with good tetQuality

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   August 4, 2020, 07:03
Default Boundary layers on complex curves with good tetQuality
  #1
Member
 
Mike Worth
Join Date: Jun 2019
Posts: 45
Rep Power: 6
MikeWorth is on a distinguished road
I'm trying to simulate a surface coating problem, whereby a thin layer of one phase is present on a solid boundary. To achieve anything like a sensible total cell count I need a mesh with thin boundary layers.

SHM will generate layers that visually look about sensible if I turn off the minTetQuality check, but if it's zero or above then any layers on parts of the surface with complex curves get removed. (Plus if I turn it off and separately look for low tet quality I see the cells in these areas highlighted.)

This is an issue because I'm using overInterDyMFoam. During the mesh step, I see lots of warnings such as:
Code:
FOAM Warning : 
    From function Foam::triFace Foam::tetIndices::faceTriIs(const Foam::polyMesh&, bool) const
    in file meshes/polyMesh/polyMeshTetDecomposition/tetIndicesI.H at line 84
    No base point for face 1180972, 6(455034 455122 456377 455127 455101 455038), produces a valid tet decomposition.
Which as far as I can tell are linked to poor tet quality. I'm also seeing some non-physical behaviours that I suspect are linked.

I'm not really confident on exactly what this tet quality measures. Does anyone know a way to get boundary layers without giving up on tet quality?

SHMD:
Code:
/*--------------------------------*- C++ -*----------------------------------*\
| =========                 |                                                 |
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
|  \\    /   O peration     | Version:  7.x                                   |
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
|    \\/     M anipulation  |                                                 |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    object      snappyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Which of the steps to run
castellatedMesh true;
snap            true;
addLayers       true;


// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
    part.stl
    {
        type    triSurfaceMesh;
        regions
        {
            part {name part;}
        }
    }
};



// Settings for the castellatedMesh generation.
castellatedMeshControls
{

    // Refinement parameters
    // ~~~~~~~~~~~~~~~~~~~~~

    // If local number of cells is >= maxLocalCells on any processor
    // switches from from refinement followed by balancing
    // (current method) to (weighted) balancing before refinement.
    maxLocalCells 1000000;

    // Overall cell limit (approximately). Refinement will stop immediately
    // upon reaching this number so a refinement level might not complete.
    // Note that this is the number of cells before removing the part which
    // is not 'visible' from the keepPoint. The final number of cells might
    // actually be a lot less.
    maxGlobalCells 70000000;

    // The surface refinement loop might spend lots of iterations refining just a
    // few cells. This setting will cause refinement to stop if <= minimumRefine
    // are selected for refinement. Note: it will at least do one iteration
    // (unless the number of cells to refine is 0)
    minRefinementCells 10;

    // Allow a certain level of imbalance during refining
    // (since balancing is quite expensive)
    // Expressed as fraction of perfect balance (= overall number of cells /
    // nProcs). 0=balance always.
    maxLoadUnbalance 0.10;


    // Number of buffer layers between different levels.
    // 1 means normal 2:1 refinement restriction, larger means slower
    // refinement.
    nCellsBetweenLevels 1;



    // Explicit feature edge refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies a level for any cell intersected by its edges.
    // This is a featureEdgeMesh, read from constant/triSurface for now.
    features
    (
        /*{
            file "part.eMesh";
            level 0;
        }*/
    );



    // Surface based refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies two levels for every surface. The first is the minimum level,
    // every cell intersecting a surface gets refined up to the minimum level.
    // The second level is the maximum level. Cells that 'see' multiple
    // intersections where the intersections make an
    // angle > resolveFeatureAngle get refined up to the maximum level.

    refinementSurfaces
    {
        part.stl
        {
            level (2 2);
            regions
            {
                part   { level (2 2); patchInfo { type wall; }}
            }
        } 
    }

    // Resolve sharp angles
    resolveFeatureAngle 180;


    // Region-wise refinement
    // ~~~~~~~~~~~~~~~~~~~~~~

    // Specifies refinement level for cells in relation to a surface. One of
    // three modes
    // - distance. 'levels' specifies per distance to the surface the
    //   wanted refinement level. The distances need to be specified in
    //   descending order.
    // - inside. 'levels' is only one entry and only the level is used. All
    //   cells inside the surface get refined up to the level. The surface
    //   needs to be closed for this to be possible.
    // - outside. Same but cells outside.

    refinementRegions
    {
    }


    // Mesh selection
    // ~~~~~~~~~~~~~~

    // After refinement patches get added for all refinementSurfaces and
    // all cells intersecting the surfaces get put into these patches. The
    // section reachable from the locationInMesh is kept.
    // NOTE: This point should never be on a face, always inside a cell, even
    // after refinement.
    locationInMesh (0.001 0.001 0.0005);


    // Whether any faceZones (as specified in the refinementSurfaces)
    // are only on the boundary of corresponding cellZones or also allow
    // free-standing zone faces. Not used if there are no faceZones.
    allowFreeStandingZoneFaces false;
}



// Settings for the snapping.
snapControls
{
    //- Number of patch smoothing iterations before finding correspondence
    //  to surface
    nSmoothPatch 3;

    //- Relative distance for points to be attracted by surface feature point
    //  or edge. True distance is this factor times local
    //  maximum edge length.
    tolerance 2.0;

    //- Number of mesh displacement relaxation iterations.
    nSolveIter 130;

    //- Maximum number of snapping relaxation iterations. Should stop
    //  before upon reaching a correct mesh.
    nRelaxIter 5;

    // Feature snapping

        //- Number of feature edge snapping iterations.
        //  Leave out altogether to disable.
        nFeatureSnapIter 10;

        //- Detect (geometric only) features by sampling the surface
        //  (default=false).
        implicitFeatureSnap false;

        //- Use castellatedMeshControls::features (default = true)
        explicitFeatureSnap true;

        //- Detect points on multiple surfaces (only for explicitFeatureSnap)
        multiRegionFeatureSnap false;
}



// Settings for the layer addition.
addLayersControls
{
    // Are the thickness parameters below relative to the undistorted
    // size of the refined cell outside layer (true) or absolute sizes (false).
    relativeSizes false;

    // Per final patch (so not geometry!) the layer information
    layers
    {
        part
        {
            nSurfaceLayers 12;//Calculated using https://openfoamwiki.net/index.php/Scripts/blockMesh_grading_calculation
        }
    }

    // Expansion factor for layer mesh
    expansionRatio 1.5;

    // Wanted thickness of final added cell layer. If multiple layers
    // is the
    // thickness of the layer furthest away from the wall.
    // Relative to undistorted size of cell outside layer.
    // is the thickness of the layer furthest away from the wall.
    // See relativeSizes parameter.
    //finalLayerThickness 1;

    firstLayerThickness 5e-6;

    // Minimum thickness of cell layer. If for any reason layer
    // cannot be above minThickness do not add layer.
    // Relative to undistorted size of cell outside layer.
    minThickness 5e-6;

    // If points get not extruded do nGrow layers of connected faces that are
    // also not grown. This helps convergence of the layer addition process
    // close to features.
    // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)
    nGrow 0;

    // Advanced settings

    // When not to extrude surface. 0 is flat surface, 90 is when two faces
    // are perpendicular
    featureAngle 180;

    // At non-patched sides allow mesh to slip if extrusion direction makes
    // angle larger than slipFeatureAngle.
    slipFeatureAngle 30;

    // Maximum number of snapping relaxation iterations. Should stop
    // before upon reaching a correct mesh.
    nRelaxIter 5;

    // Number of smoothing iterations of surface normals
    nSmoothSurfaceNormals 1;

    // Number of smoothing iterations of interior mesh movement direction
    nSmoothNormals 3;

    // Smooth layer thickness over surface patches
    nSmoothThickness 10;

    // Stop layer growth on highly warped cells
    maxFaceThicknessRatio 0.5;

    // Reduce layer growth where ratio thickness to medial
    // distance is large
    maxThicknessToMedialRatio 0.3;

    // Angle used to pick up medial axis points
    // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x.
    minMedialAxisAngle 90;


    // Create buffer region for new layer terminations
    nBufferCellsNoExtrude 0;


    // Overall max number of layer addition iterations. The mesher will exit
    // if it reaches this number of iterations; possibly with an illegal
    // mesh.
    nLayerIter 50;
}



// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
meshQualityControls
{
    maxNonOrtho 65;
    maxBoundarySkewness 20;
    maxInternalSkewness 4;
    maxConcave 80;
    minFlatness 0.5;
    minVol 1e-13;
    minTetQuality -1e30;//0;
    minArea -1;
    minTwist 0.02;
    minDeterminant -1e30;//0.001;
    minFaceWeight 0.02;
    minVolRatio 0.01;
    minTriangleTwist -1;



    // Advanced


    //- Number of error distribution iterations
    nSmoothScale 4;
    //- amount to scale back displacement at error points
    errorReduction 0.75;
}


// Advanced

debug 0;


// Write flags
writeFlags
(
    scalarLevels    // write volScalarField with cellLevel for postprocessing
    layerSets       // write cellSets, faceSets of faces in layer
    layerFields     // write volScalarField for layer coverage
);


// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;


// ************************************************************************* //
MikeWorth is offline   Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Wind turbine simulation Saturn CFX 58 July 3, 2020 01:13
Wrong flow in ratating domain problem Sanyo CFX 17 August 15, 2015 06:20
Question about heat transfer coefficient setting for CFX Anna Tian CFX 1 June 16, 2013 06:28
Low Mixing time Problem Mavier CFX 5 April 29, 2013 00:00
New topic on same subject - Flow around race car Tudor Miron CFX 15 April 2, 2004 06:18


All times are GMT -4. The time now is 12:18.