# Use "bounded" in scheme or not to use?

 Register Blogs Members List Search Today's Posts Mark Forums Read

 June 11, 2013, 16:20 Use "bounded" in scheme or not to use? #1 Senior Member     Ehsan Join Date: Oct 2012 Location: Iran Posts: 2,209 Rep Power: 20 Hi I have read that page in openfoam.org about the change in 2.2.0 version and adding bounded to time and div schemes.but haven't understood that I need to use bounded in time and dive terms or not certainly. I use now fvScheme as: Code: ```fluxScheme Kurganov; ddtSchemes { default bounded CrankNicolson .5; //ddt(rho) CrankNicolson .5; //ddt(rhoU) CrankNicolson .5; //ddt(rhoE) Euler; //ddt(rho,U) Euler; //ddt(rho,e) Euler; //ddt(rho,h) Euler; //ddt(rho,omega) Euler; //ddt(rho,k) Euler; //ddt(rho,gas) Euler; } gradSchemes { default none; grad(U) Gauss linear; grad(rho) Gauss linear; grad(rhoU) Gauss linear; grad((1|psi)) Gauss linear; grad(e) Gauss linear; grad((1|thermo:psi)) Gauss linear; grad(h) Gauss linear; grad(sqrt(((Cp|Cv)*(1|psi)))) Gauss linear; grad(sqrt(((Cp|Cv)*(1|thermo:psi)))) Gauss linear; grad(T) Gauss linear; grad(omega) Gauss linear; grad(k) Gauss linear; grad(gas) Gauss linear; } divSchemes { default none; div(tauMC) Gauss linear; div(phi) bounded Gauss linearUpwindV; div(phi,omega) bounded Gauss linearUpwind grad(omega); div(phi,k) bounded Gauss linearUpwind grad(k); div(phi,gas) Gauss limitedLimitedLinear 1 0 1; div(phi,epsilon) bounded Gauss linearUpwind grad(epsilon); } laplacianSchemes { default none; laplacian(muEff,U) Gauss linear corrected; laplacian(alphaEff,e) Gauss linear corrected; laplacian(alpha,e) Gauss linear corrected; laplacian(k,T) Gauss linear corrected; laplacian(DepsilonEff,omega) Gauss linear corrected; laplacian(DkEff,k) Gauss linear corrected; laplacian(DomegaEff,omega) Gauss linear corrected; laplacian(alphaEff,h) Gauss linear corrected; laplacian(muEff,gas) Gauss linear corrected; } interpolationSchemes { default none; reconstruct(rho) vanLeer; reconstruct(U) vanLeerV; reconstruct(T) vanLeer; interpolate(rho) linear; interpolate(U) linear; interpolate(rhoU) linear; interpolate(muEff) linear; interpolate(tauMC) linear; } snGradSchemes { default none; snGrad(U) corrected; }``` is it true? my case is compressible and unsteady like a shock tube. thank anybody helps for clarification. __________________ Injustice Anywhere is a Threat for Justice Everywhere.Martin Luther King. To Be or Not To Be,Thats the Question! The Only Stupid Question Is the One that Goes Unasked.