
[Sponsors] 
July 12, 2012, 02:51 
Matrix and Varialbe Definition

#1 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Hello,
is it possible to define a 5x5 matrix in OpenFoam? If yes, how? The same question is, if there is a possibility to define a vector with 5 components? But Iīve to make this definition in "createFields.H" I would like to solve the equation where A,B,C are 5x5 matrices and v a 5x1 vector. Best regards treima 

July 13, 2012, 02:27 

#2 
Senior Member
Kathrin Kissling
Join Date: Mar 2009
Location: Besigheim, Germany
Posts: 134
Rep Power: 10 
Is it just the equation or are you going to solve that on a finitevolume grid?
In Version 1.6ext there is support for NxN matrices. You might want to check this out! Best Kathrin 

July 13, 2012, 02:49 

#3 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Thanks.
Iīd like to solve that one the grid for v, yes. Iīve tried to divied this into three equations like the density, momentum and energy equation like the "normal" way, but they are coupled. Have you ever tried this with OpenFoam 2.1.0, too? Or have you any experience if there is support, too? And the last question . Do you know how it is done in 1.6ext? Best treima 

August 10, 2012, 03:23 

#4 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Hello,
I didnīt work on this for a while, but now Iīve found some possiblities and, of course, new problems. Here ist my partial differential equation system, which i like to solve: Iīve defined the matrices via Matrix<volScalarField,scalarField> jacobi_f(5,5), jacobi_g(5,5), jacobi_h(5,5); and assigned the elements via jacobi_f[i][j] = functions; and so on. My problem is now, how to deal with vectors of dimension five. Itīs not possible to define a fivedimensional volVectorField and to combine this with my matrices. Is it possible to solve the five dimensional coupled system with OpenFoam? If yes, how can this be done? Do you have any ideas? regards, treima 

August 10, 2012, 03:32 

#5 
Senior Member
Kathrin Kissling
Join Date: Mar 2009
Location: Besigheim, Germany
Posts: 134
Rep Power: 10 
Check out the VectorN class in 1.6ext.
There is no such thing in the vanilla version. Sorry Best Kathrin 

August 10, 2012, 05:05 

#6 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Thanks a lot for this quick reply!
Iīve to make some changes in my solver for using it with 1.6ext. But do you know an existing solver where VectorN is used? 

August 10, 2012, 05:14 

#7 
Senior Member
Kathrin Kissling
Join Date: Mar 2009
Location: Besigheim, Germany
Posts: 134
Rep Power: 10 
Hey treima,
in 1.6ext there is blockCoupledScalarTransportFoam documentation and application of the tecnique can be found in Ivor Cliffords work (6th OFW training material) and in my work (see this years OFW presentation slides) Best Kathrin 

August 11, 2012, 07:36 

#8 
Senior Member
Hisham Elsafti
Join Date: Apr 2011
Location: Braunschweig, Germany
Posts: 249
Blog Entries: 10
Rep Power: 9 
Hello
I think you can go around your problem in OF 2.x by dividing your equation into 5 scalar equations and solve each separately. I mean the interactionterms can be treated explicitly and you iterate to converge (the segregated way) Regards, Hisham 

August 14, 2012, 02:30 

#9 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Hello,
Iīve thought about this, too. But the five equations are coupled with each other, so that it isnīt possible to extract parts with less then four variables and I think. In OpenFOAM you canīt solve equations with more than one variable, right? Perhaps I didnīt understand this solution, but at the moment I canīt see your point Thanks Kathrin for hints, Iīll have a closer look at the blockCoupledsolver and try to extend this one for five equations! Regards treima 

August 24, 2012, 09:34 

#10 
Member
Join Date: Mar 2012
Location: Munich, Germany
Posts: 67
Rep Power: 7 
Hello,
Iīve tried to sperate these equations, like Hisham suggested, in scalar equations. Now Iīm solving this problem (for demonstration, I take the first row) + the four other equations. In OpenFOAM Iīve Implemented this: solve ( fvm::ddt(Lambda_1) + a21*gradXLambda2 + 1./tcoeff*a31*gradXLambda3 + 1./tcoeff*a41*gradXLambda4 + 1./pow(tcoeff,2)*a51*gradXLambda5 + 1./tcoeff*b21*gradYLambda2 + 1./tcoeff*b31*gradYLambda3 + 1./tcoeff*b41*gradYLambda4 + 1./pow(tcoeff,2)*b51*gradYLambda5 + 1./tcoeff*c21*gradZLambda2 + 1./tcoeff*c31*gradZLambda3 + 1./tcoeff*c41*gradZLambda4 + 1./pow(tcoeff,2)*c51*gradZLambda5 ); solve ( equation2 ); solve ( equation3 ); solve ( equation4 ); solve ( equation5 ); where tcoeff is a cofactor to get the right dimensions (at the end, dimensions doesnīt matter) and gradXLambda2, gradXLambda3 are defined as followed: volScalarField gradXLambda2 (unitVector_x & fvc::grad(Lambda_2)); Is this the right way to do this? The results are a little bit confusing. Perhaps the mistake is in my implementation, in my derivation of the equations, in my boundary conditions or somewhere else. Do anyone have any experience or suggestions concerning my problem? Thanks, treima 

Thread Tools  
Display Modes  

