CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM > OpenFOAM Running, Solving & CFD

Why bother with viscosity models?

Register Blogs Community New Posts Updated Threads Search

Like Tree3Likes
  • 1 Post By Bernhard
  • 1 Post By alberto
  • 1 Post By vonboett

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   August 5, 2012, 15:22
Default Why bother with viscosity models?
  #1
Senior Member
 
kmooney's Avatar
 
Kyle Mooney
Join Date: Jul 2009
Location: San Francisco, CA USA
Posts: 323
Rep Power: 17
kmooney is on a distinguished road
Howdy Foamers,

As I'm writing up my dissertation, I couldn't help but come to the conclusion that using viscosity models (power law, Carreau-Yasuda what have you) is simply the wrong way to model a shear thinning fluid in a CFD environment. Hear me out. You can much more accurately match an experimental shear rate - viscosity curve with something like a high order polynomial or a spline formulation than you can trying to force a particular model's parameters to match your data. This 'force fit' is typically done with some kind of least-squares approach.

I believe that these models are simply left over from pencil paper non-Newtonian pipe flow solutions. Don't get me wrong, I use these models all the time, I just feel there is a more intelligent way to go about this.

Any thoughts?
kmooney is offline   Reply With Quote

Old   August 5, 2012, 15:50
Default
  #2
Senior Member
 
Bernhard
Join Date: Sep 2009
Location: Delft
Posts: 790
Rep Power: 21
Bernhard is on a distinguished road
I do not know the background of the models that you mention, but I would think the most important thing is to get the viscosity-strain rate curve right. For the known models there is probably (correct me if I am wrong), physical argument for the parameters in the model. Parameters that have a real life meaning are in my opinion favourable. But if your fluid does not match the assumptions of the model, then it does not make sense to use them and I'd also rather use a correct fit with more parameters than a worse fit with the wrong physical meaning.
owayz likes this.
Bernhard is offline   Reply With Quote

Old   August 5, 2012, 16:29
Default
  #3
New Member
 
M K Singh
Join Date: Sep 2009
Posts: 19
Rep Power: 16
mksingh is on a distinguished road
Quote:
Originally Posted by kmooney View Post
Howdy Foamers,

As I'm writing up my dissertation, I couldn't help but come to the conclusion that using viscosity models (power law, Carreau-Yasuda what have you) is simply the wrong way to model a shear thinning fluid in a CFD environment. Hear me out. You can much more accurately match an experimental shear rate - viscosity curve with something like a high order polynomial or a spline formulation than you can trying to force a particular model's parameters to match your data. This 'force fit' is typically done with some kind of least-squares approach.

I believe that these models are simply left over from pencil paper non-Newtonian pipe flow solutions. Don't get me wrong, I use these models all the time, I just feel there is a more intelligent way to go about this.

Any thoughts?
Hi,
What is your shear thinning fluid? I am asking this because in Macosko book ' Rheology: Principles, Measurements, and Applications ', you can see that many polymeric (shear thinning) fluids are described well using power law, Yasuda and many more. In my opinion, it is well proven in literature that many polymer systems follow this models. I am wondering if you have completely new system. However, by rheological measurements you can produce your own fit for viscosity and strain rates.
M K Singh
mksingh is offline   Reply With Quote

Old   August 5, 2012, 16:34
Default
  #4
Senior Member
 
kmooney's Avatar
 
Kyle Mooney
Join Date: Jul 2009
Location: San Francisco, CA USA
Posts: 323
Rep Power: 17
kmooney is on a distinguished road
My fluid in particular is a Carreau-Yasuda type. These fluids are characterized by an upper shear rate viscosity plateau, a lower shear rate viscosity plateau, and a smooth transition between the two.

Looking at the viscosity profile it definitely follows this pattern but you still get a better fit if you scrap the model.

I feel that part of the problem is the curve representations on log-log axes. What looks like a great fit could actually be way off.
kmooney is offline   Reply With Quote

Old   August 5, 2012, 17:31
Default
  #5
Assistant Moderator
 
Bernhard Gschaider
Join Date: Mar 2009
Posts: 4,225
Rep Power: 51
gschaider will become famous soon enoughgschaider will become famous soon enough
Quote:
Originally Posted by kmooney View Post
My fluid in particular is a Carreau-Yasuda type. These fluids are characterized by an upper shear rate viscosity plateau, a lower shear rate viscosity plateau, and a smooth transition between the two.

Looking at the viscosity profile it definitely follows this pattern but you still get a better fit if you scrap the model.

I feel that part of the problem is the curve representations on log-log axes. What looks like a great fit could actually be way off.
Have you had a look at the viscoelastic models in 1.6-ext? There is one called WhiteMetznerCarreauYasuda. Don't know if this is the one you're talking about ... the two extra names got me confused
gschaider is offline   Reply With Quote

Old   August 5, 2012, 17:35
Default
  #6
Senior Member
 
kmooney's Avatar
 
Kyle Mooney
Join Date: Jul 2009
Location: San Francisco, CA USA
Posts: 323
Rep Power: 17
kmooney is on a distinguished road
Quote:
Originally Posted by gschaider View Post
Have you had a look at the viscoelastic models in 1.6-ext? There is one called WhiteMetznerCarreauYasuda. Don't know if this is the one you're talking about ... the two extra names got me confused
Hi Bernhard,
I actually implemented a viscosity Carreau-Yasuda model myself. I believe the viscoelastic model you are referring to models the relaxation time lambda with a CY type curve.
kmooney is offline   Reply With Quote

Old   August 6, 2012, 02:17
Default
  #7
Senior Member
 
Alberto Passalacqua
Join Date: Mar 2009
Location: Ames, Iowa, United States
Posts: 1,912
Rep Power: 36
alberto will become famous soon enoughalberto will become famous soon enough
Certainly "fitting" an experimental curve is easy and works in one specific case, but in my opinion makes little sense in a CFD context, because it removes the generality of the CFD approach.

Keep in mind that the purpose of physical models is to try to represent the actual physics of the problem, as a function of a set of parameters. This does not necessarily imply that you will match experiments in every case, because you might neglect certain aspects. The objective of the modeler is to make physical models more accurate and general, not to replace them with an empirical correlation that can be easily found by regression of experimental data ;-)
owayz likes this.
__________________
Alberto Passalacqua

GeekoCFD - A free distribution based on openSUSE 64 bit with CFD tools, including OpenFOAM. Available as in both physical and virtual formats (current status: http://albertopassalacqua.com/?p=1541)
OpenQBMM - An open-source implementation of quadrature-based moment methods.

To obtain more accurate answers, please specify the version of OpenFOAM you are using.
alberto is offline   Reply With Quote

Old   August 6, 2012, 06:09
Default
  #8
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
Quote:
Give me four parameters, and I will draw an elephant for you; with five I will have him raise and lower his trunk and his tail. -German mathematician, Friedrich Gauss
My two cents on the topic are to think about the physical significance of the models i.e. phenomenological vs. purely empirical. Sure, an purely empirical model may fit your data better (and I see the engineering significance of that) but there are reasons that models have certain terms appearing in them, having direct connection to experimental observation (phenomena).

But these are the questions that one asks while writing a dissertation, hence why people often speak very vaguely rather than definitive in a dissertation when talking about "models".

I like the discussion by the way.

Some entertaining links
http://levenspiel.com/octave/elephant.htm
http://demonstrations.wolfram.com/FittingAnElephant/
chegdan is offline   Reply With Quote

Old   May 8, 2013, 03:16
Default
  #9
Senior Member
 
Albrecht vBoetticher
Join Date: Aug 2010
Location: Zürich, Swizerland
Posts: 237
Rep Power: 16
vonboett is on a distinguished road
I can agree with both sides of the discussion. The past sixty years of debris flow models are a history of failure when it comes to viscosity models, because each model is only capable to reproduce experiments or test cases when it is calibrated by equal experiments, but fails when applied to other terrains and material compositions.
Never the less the dominating physical processes were more and more understood by the different trys of rheological modelling, so today the viscous effects of the fluid and the granular dynamics of the grains are now accounted for seperateley by most approaches, with two phase models or Eulerien-Lagrangian coupled simulations.
These models have to try to stay as simple as possible, because the aim is that an engineering office should be able to model a hillslope in reasonabole time without needing a super-cluster, they might have data of grainsize distribution and experience in water content of expected debris flows, but no experimental shear-viscosity relation for each site. Especially with debris flow material it is not trivial to get a shear-viscosity relation experimentally due to large grains.
I think here the long-term aim is, using viscosity models allows to convince the society of certain approaches that are then seen as valid and allow engineering protection design as well as hazard risk zoning and ensurance.
immortality likes this.
vonboett is offline   Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Is this understanding of turbulence models correct? 3kha Main CFD Forum 3 January 31, 2011 21:31
Viscosity properties for transport models ozzythewise OpenFOAM Running, Solving & CFD 4 October 7, 2010 20:39
Implementing New Viscosity Models ! T.D. OpenFOAM Running, Solving & CFD 4 September 28, 2010 05:55
TwoPhaseEulerFoam viscosity models juho OpenFOAM Running, Solving & CFD 2 May 20, 2008 11:31
non-linear eddy viscosity models George Main CFD Forum 0 December 11, 2006 19:14


All times are GMT -4. The time now is 14:10.