|
[Sponsors] |
Help with FOAM fatal error (fault lying in snappyhexmesh) |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
February 1, 2022, 11:01 |
Help with FOAM fatal error (fault lying in snappyhexmesh)
|
#1 |
New Member
alex chisholm
Join Date: Oct 2021
Posts: 3
Rep Power: 5 |
Apologies if i miss out any vital information in this problem i am fairly new to openfoam so would appreciate extra patience. I am running a simulation a bubble moving through series of cylinders and keep getting the following error message in my log.decomposePar:
Code:
-> FOAM FATAL IO ERROR: size 188598 is not equal to the given value of 123478 file: /home/mirco/OpenFOAM/mirco-v1812/run/OF_training/pinfin6.2/0/cellLevel From function Foam::Field<Type>::Field(const Foam::word&, const Foam::dictionary&, Foam::label) [with Type = double; Foam::label = int] in file /home/mirco/OpenFOAM/OpenFOAM-v1812/src/OpenFOAM/lnInclude/Field.C at line 219. FOAM exiting people with similar issues have not removed information from previous runs so the meshing information is coming from different sources hence the error message. However i don't think this is the case hear as i have wiped all previous data before each run. I have managed to identify the problem being the refinement level on line 295 where the error message is produced when the refinement level is moved from (0 0) to (1 1) in snappyhexmeshdict i've illustrated where this is in the code below. Code:
FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #include "../simSetup" // Which of the steps to run castellatedMesh true; snap true; addLayers true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { pin.1t { type searchableCylinder; point1 (#calc "0.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "0.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.2t { type searchableCylinder; point1 (#calc "1.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "1.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.3t { type searchableCylinder; point1 (#calc "2.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "2.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.4t { type searchableCylinder; point1 (#calc "3.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "3.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.5t { type searchableCylinder; point1 (#calc "4.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "4.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.6t { type searchableCylinder; point1 (#calc "5.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "5.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.7t { type searchableCylinder; point1 (#calc "6.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "6.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.8t { type searchableCylinder; point1 (#calc "7.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "7.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.9t { type searchableCylinder; point1 (#calc "8.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "8.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.10t { type searchableCylinder; point1 (#calc "9.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "9.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } pin.11t { type searchableCylinder; point1 (#calc "10.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "10.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; } /*pin.12t { type searchableCylinder; point1 (#calc "11.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" -1); point2 (#calc "11.5*(2.0*$Rx+2.0*$Rpin)" #calc "$Ry+$Rpin" 1); radius $Rpin; }*/ pin.1b { type searchableCylinder; point1 (#calc "0.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "0.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.2b { type searchableCylinder; point1 (#calc "1.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "1.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.3b { type searchableCylinder; point1 (#calc "2.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "2.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.4b { type searchableCylinder; point1 (#calc "3.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "3.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.5b { type searchableCylinder; point1 (#calc "4.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "4.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.6b { type searchableCylinder; point1 (#calc "5.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "5.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.7b { type searchableCylinder; point1 (#calc "6.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "6.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.8b { type searchableCylinder; point1 (#calc "7.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "7.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.9b { type searchableCylinder; point1 (#calc "8.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "8.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.10b { type searchableCylinder; point1 (#calc "9.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "9.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } pin.11b { type searchableCylinder; point1 (#calc "10.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "10.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; } /*pin.12b { type searchableCylinder; point1 (#calc "11.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" -1); point2 (#calc "11.5*(2.0*$Rx+2.0*$Rpin)" #calc "-($Ry+$Rpin)" 1); radius $Rpin; }*/ }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 20000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 10; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 8; //used to be 3 // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { "pin.*" { // Surface-wise min and max refinement level level (1 1); ------ LINE 295 where the error is!! } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (1e-3 1e-3 0);/*(168 -225 -26) ;*/ // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 9; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 10.0; //- Number of mesh displacement relaxation iterations. nSolveIter 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Feature snapping /* //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; */ } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { "pin.*" { nSurfaceLayers 5; } } // Expansion factor for layer mesh expansionRatio 2; // Wanted thickness of final added cell layer. If multiple layers // is the thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // See relativeSizes parameter. finalLayerThickness 0.8; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 50; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 10; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" //- Number of error distribution iterations -------- ADDED FOR OF4 nSmoothScale 4; //- Amount to scale back displacement at error points -------- ADDED FOR OF4 errorReduction 0.75; } // Advanced // Write flags writeFlags ( scalarLevels layerSets layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; Any help would be appreciated been stuck on this for a while with no success. If any more information is needed to help please just ask. thanks |
|
Tags |
foam fatal error, openfoam snappyhexmesh |
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
problem during mpi in server: expected Scalar, found on line 0 the word 'nan' | muth | OpenFOAM Running, Solving & CFD | 3 | August 27, 2018 05:18 |
[mesh manipulation] refineMesh Error | mohsen.boojari | OpenFOAM Meshing & Mesh Conversion | 3 | March 1, 2018 23:07 |
[snappyHexMesh] How to define to right point for locationInMesh | Mirage12 | OpenFOAM Meshing & Mesh Conversion | 7 | March 13, 2016 15:07 |
decomposePar is missing a library | whk1992 | OpenFOAM Pre-Processing | 8 | March 7, 2015 08:53 |
snappyHexMesh in parallel - FOAM Fatal IO Error | mturcios777 | OpenFOAM Running, Solving & CFD | 4 | August 10, 2012 20:18 |