CFD Online Discussion Forums

CFD Online Discussion Forums (https://www.cfd-online.com/Forums/)
-   OpenFOAM (https://www.cfd-online.com/Forums/openfoam/)
-   -   namespace Foam (https://www.cfd-online.com/Forums/openfoam/93847-namespace-foam.html)

Argen October 27, 2011 20:10

namespace Foam
 
namespace Foam
{
namespace radiation
{
defineTypeNameAndDebug(P1, 0);

addToRunTimeSelectionTable
(
radiationModel,
P1,
dictionary
);
}
}

Anyone can explain the above code line by line?

kathrin_kissling October 28, 2011 02:55

your within namespace Foam
namespace radiation

a typeName is defined

the P1 model is added to the runTime selection table

What is your question? Can you please clarify what is unclear?

Best

Kathrin

marupio October 28, 2011 10:53

The first two lines are namespaces, as kathrin mentioned. If you don't know what those are, they are basic components of C++ created recently to avoid name collisions. If your book is old, it won't mention them - try googling it.

The next two are macros. OpenFOAM is full of macros. Many coding standards forbid all macros (except includes and include guards), but not in OpenFOAM. These make the code more difficult to read for a new-comer... but they also make it easier to work with. Many pros and cons. Anyways...

defineTypeNameAndDebug
OpenFOAM has a type naming convention to help keep track of the types of classes. These macros are in one of the files in src/OpenFOAM/db/typeInfo. Basically, just holds a word with the name of the class.

addToRunTimeSelectionTable
This is part of OpenFOAM's runTime selection mechanism. This is described here: http://openfoamwiki.net/index.php/Op...tion_mechanism
You probably don't want to go too deep into figuring it out - rather, just know it is part of the underlying machinery that other objects use to call its constructors.

Hope that helps.

kathrin_kissling October 31, 2011 02:34

Hi David,

thank you for the typeInfo information. This is very helpful. I really searched for them but it was very hard to find!

Best

Kathrin

Bruno_Jorge February 5, 2019 08:55

Quote:

Originally Posted by Argen (Post 329805)
namespace Foam
{
namespace radiation
{
defineTypeNameAndDebug(P1, 0);

addToRunTimeSelectionTable
(
radiationModel,
P1,
dictionary
);
}
}

Anyone can explain the above code line by line?

Hello everyone!
I have the same problem. I am using OpenFOAM and it shows me this error message:


RAS/kEpsilonModelI/kEpsilonModelI.C:42:6: error: redefinition of ‘void Foam::RASModels::kEpsilonModelI<BasicTurbulenceMod el>::correctNut()’
void kEpsilonModelI<BasicTurbulenceModel>::correctNut()


According to the message, the bug is in line 42, but I do not see any problem. This is the flie kEpsilonModelI.C:


#include "kEpsilonModelI.H"
#include "fvOptions.H"
#include "bound.H"
#include "wallDist.H"
#include "wallFvPatch.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace RASModels
{

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

template<class BasicTurbulenceModel>
void kEpsilonModelI<BasicTurbulenceModel>::correctNut()
{
printf("\n nut\n");
const volScalarField& y_(wallDist::New(this->mesh_).y());

const tmp<volScalarField> tnuw = this->nu();

volScalarField &yPlus = Yplus.ref();
yPlus=this->rho_*uTau*y_/tnuw;

volScalarField &fmi_ = fmi.ref();
fmi_=1-exp(-0.0002*yPlus-0.0006*pow(yPlus,2)-0.00000025*pow(yPlus,3));
tmp<volScalarField> Ry=y_*sqrt(k_)/(this->nu());

tmp<volScalarField> D=epsilon_*exp(-0.095*(Ry));

this->nut_ = fmi_*Cmu_*sqr(k_)/(max(epsilon_-D,VSMALL*epsilon_));

this->nut_.correctBoundaryConditions();

fv::options::New(this->mesh_).correct(this->nut_);

const fvPatchList& patches = this->mesh_.boundary();
forAll(patches, patchi)
{
const fvPatch& patch = patches[patchi];
if (isA<wallFvPatch>(patch))
{
scalarField &nutboundary=this->nut_.boundaryFieldRef()[patchi];
nutboundary=0;
}
}
BasicTurbulenceModel::correctNut();
}


template<class BasicTurbulenceModel>
tmp<fvScalarMatrix> kEpsilonModelI<BasicTurbulenceModel>::kSource() const
{
return tmp<fvScalarMatrix>
(
new fvScalarMatrix
(
k_,
dimVolume*this->rho_.dimensions()*k_.dimensions()
/dimTime
)
);
}


template<class BasicTurbulenceModel>
tmp<fvScalarMatrix> kEpsilonModelI<BasicTurbulenceModel>::epsilonSourc e() const
{
return tmp<fvScalarMatrix>
(
new fvScalarMatrix
(
epsilon_,
dimVolume*this->rho_.dimensions()*epsilon_.dimensions()
/dimTime
)
);
}

template<class BasicTurbulenceModel>
tmp<volScalarField>kEpsilonModelI<BasicTurbulenceM odel>::alpha_DCoef()
{
//Correct the trace of the tensorial production to be consistent
// with the near-wall generation from the wall-functions

const volScalarField& y_(wallDist::New(this->mesh_).y());

const tmp<volScalarField> tnuw = this->nu();

volScalarField &yPlus = Yplus.ref();
yPlus=this->rho_*uTau*y_/tnuw;

volScalarField &fmi_ = fmi.ref();
fmi_=1-exp(-0.0002*yPlus-0.0006*pow(yPlus,2)-0.00000025*pow(yPlus,3));

tmp<volScalarField> Ry=y_*sqrt(k_)/(this->nu());

tmp<volScalarField> D=epsilon_*exp(-0.095*(Ry));

this->AlphaD= Cmu_*sqr(k_)*fmi_/(epsilon_-D);
this->AlphaD.correctBoundaryConditions();
fv::options::New(this->mesh_).correct(this->AlphaD);

return this->AlphaD;
}


// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

template<class BasicTurbulenceModel>
kEpsilonModelI<BasicTurbulenceModel>::kEpsilonMode lI
(
const alphaField& alpha,
const rhoField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const transportModel& transport,
const word& propertiesName,
const word& type
)
:
eddyViscosity<RASModel<BasicTurbulenceModel>>
(
type,
alpha,
rho,
U,
alphaRhoPhi,
phi,
transport,
propertiesName
),
Ceps1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Ceps1",
this->coeffDict_,
1.44
)
),
Ceps2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Ceps2",
this->coeffDict_,
1.92
)
),
Cmu_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Cmu",
this->coeffDict_,
0.075
)
),
C1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"C1",
this->coeffDict_,
1.44
)
),
C2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"C2",
this->coeffDict_,
1.92
)
),
C3_
(
dimensioned<scalar>::lookupOrAddToDict
(
"C3",
this->coeffDict_,
-0.33
)
),
sigmak_
(
dimensioned<scalar>::lookupOrAddToDict
(
"sigmak",
this->coeffDict_,
1.3
)
),
sigmaEps_
(
dimensioned<scalar>::lookupOrAddToDict
(
"sigmaEps",
this->coeffDict_,
1.3
)
),

k_
(
IOobject
(
IOobject::groupName("k", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
this->mesh_
),
epsilon_
(
IOobject
(
IOobject::groupName("epsilon", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
this->mesh_
)
{
fmi=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"fmi",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("fmiCoef",dimensionSet(0,0,0,0,0 ,0, 0),0)
)
);

Yplus=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"yPlus",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("yPlus",dimensionSet(0,0,0,0,0,0 , 0),0)
)
);

Rp=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"Rp",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("Rp",dimensionSet(0,0,0,0,0,0, 0),0)
)
);

f3=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"f3",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("f3",dimensionSet(0,0,0,0,0,0, 0),0)
)
);

f2=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"f2",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("f2",dimensionSet(0,0,0,0,0,0, 0),0)
)
);

E=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"E",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("E",dimensionSet(0,2,-4,0,0,0, 0),0)
)
);
De=tmp<volScalarField>
(new volScalarField
(
IOobject
(
"DE",
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("DE",dimensionSet(0,2,-4,0,0,0, 0),0)
)
);

IOdictionary transportProperties
(
IOobject
(
"transportProperties",
this->runTime_.constant(),
this->mesh_,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::AUTO_WRITE
)
);

Info<< "Reading uTau\n" << endl;
uTau.dimensions().reset(dimensionSet(0,1,-1,0,0,0, 0));
uTau=dimensionedScalar
(
transportProperties.lookup("uTau")
);
Info<< "Read uTau\n" << endl;

bound(k_, this->kMin_);
bound(epsilon_, this->epsilonMin_);

if (type == typeName)
{
this->printCoeffs(type);
}
}


// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

template<class BasicTurbulenceModel>
bool kEpsilonModelI<BasicTurbulenceModel>::read()
{
if (eddyViscosity<RASModel<BasicTurbulenceModel>>::re ad())
{
Cmu_.readIfPresent(this->coeffDict());
C1_.readIfPresent(this->coeffDict());
C2_.readIfPresent(this->coeffDict());
C3_.readIfPresent(this->coeffDict());
sigmak_.readIfPresent(this->coeffDict());
sigmaEps_.readIfPresent(this->coeffDict());

return true;
}
else
{
return false;
}
}
template<class BasicTurbulenceModel>
const volScalarField kEpsilonModelI<BasicTurbulenceModel>::Calculatef3( volScalarField G )
{
volScalarField &Rp_ref = Rp.ref();
Rp_ref=min((G/(k_*sqrt(epsilon_*Cmu_/this->nu()))),k_/k_);


volScalarField &f3_ref = f3.ref();
f3_ref=exp(1.8*pow3(Rp_ref));

return f3_ref;
}

template<class BasicTurbulenceModel>
const volScalarField kEpsilonModelI<BasicTurbulenceModel>::Calculatef22 ()
{
const volScalarField& y_(wallDist::New(this->mesh_).y());

tmp<volScalarField> Ry=y_*sqrt(k_)/(this->nu());

tmp<volScalarField> D=epsilon_*exp(-0.095*(Ry));

tmp<volScalarField> PseudoEpsilon = epsilon_-D;

return PseudoEpsilon/epsilon_;
}
template<class BasicTurbulenceModel>
const volScalarField kEpsilonModelI<BasicTurbulenceModel>::CalculateE(v olVectorField U)
{
volVectorField dkdn=fvc::grad(k_);
volTensorField dUdn=fvc::grad(U);
volScalarField dUdy=dUdn.component(3);
volVectorField d2Udn2=fvc::grad(dUdy);
volScalarField &E_ref = E.ref();
E_ref=1.2*this->nu()*this->nut()*fvc::magSqrGradGrad(U)+
0.0075*this->nu()*k_/epsilon_*dkdn.component(1)*dUdn.component(3)*d2Udn 2.component(1);

return E_ref;
}
template<class BasicTurbulenceModel>
const volScalarField kEpsilonModelI<BasicTurbulenceModel>::Calculatef21 ()
{
tmp<volScalarField> Rt = sqr(k_)/(this->nu()*epsilon_);

return 1 - 0.22*exp(-0.3357*sqrt(Rt));
}
template<class BasicTurbulenceModel>
const volScalarField kEpsilonModelI<BasicTurbulenceModel>::Calculatef2( volScalarField G)
{
return Calculatef21()*Calculatef22()+Calculatef3(G)-1;
}

template<class BasicTurbulenceModel>
void kEpsilonModelI<BasicTurbulenceModel>::correct()
{

printf("kepsilon\n");
if (!this->turbulence_)
{
return;
}
// Local references
// const alphaField& alpha = this->alpha_;
// const rhoField& rho = this->rho_;
const surfaceScalarField& alphaRhoPhi = this->alphaRhoPhi_;
const volVectorField& U = this->U_;
// volScalarField& nut = this->nut_;
//fv::options& fvOptions(fv::options::New(this->mesh_));

eddyViscosity<RASModel<BasicTurbulenceModel>>::cor rect();


tmp<volTensorField> tgradU = fvc::grad(this->U_);
volScalarField G(this->GName(), this->nut()*(twoSymm(tgradU()) && tgradU()));
tgradU.clear();

tgradU.clear();

// Update epsilon and G at the wall
epsilon_.boundaryFieldRef().updateCoeffs();


const volScalarField f2_(Calculatef2(G));
volScalarField &f2_ref = f2.ref();
f2_ref=f2_;
volScalarField &DE_ref = De.ref();
DE_ref=Ceps2_*f2_*sqr(epsilon_)/k_;
printf("inicio eq dissipacao");
// Dissipation equation
tmp<fvScalarMatrix> epsEqn
(
fvm::ddt(epsilon_)
+ fvm::div(alphaRhoPhi, epsilon_)
- fvm::laplacian(DepsilonEff(), epsilon_)
==
Ceps1_*G*epsilon_/k_
- fvm::Sp(Ceps2_*f2_*epsilon_/k_, epsilon_)
+ CalculateE(U)
);

printf("\nfim eq epsilon\n");
epsEqn.ref().relax();
epsEqn.ref().boundaryManipulate(epsilon_.boundaryF ieldRef());
solve(epsEqn);
bound(epsilon_, this->epsilonMin_);


// // Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn
(
fvm::ddt(k_)
+ fvm::div(alphaRhoPhi, k_)
- fvm::laplacian(DkEff(), k_)
==
G
- fvm::Sp(epsilon_/k_, k_)
);

kEqn.ref().relax();
solve(kEqn);
bound(k_, this->kMin_);


correctNut();
}


// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace RASModels
} // End namespace Foam

// ************************************************** *********************** //


If someone see the bug, please, help me.
Best regards.


All times are GMT -4. The time now is 10:37.