CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > Phoenics

BFC for Dam break problem

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   January 18, 2001, 16:22
Default BFC for Dam break problem
  #1
Mehdi BEN ELHADJ
Guest
 
Posts: n/a
Consider a horizontal and frictionless channel, which is 1000 m in lenght. A dam site is located at 500 m. The initial upstream-water depth is 10 m, and the vertical dimension of gaz layer is 3m. At time t=0, the dam is broken instantaneously.

I use a space steps of 5 m (200 cells ) in horizontal direction ; 0,5 m (20 cells in upstream-water) in vertical direction and 3 cells in gaz layer in vertical direction. A time step is (20/100) s.

I work with a (2-D) model and using implicit scheme for time and hybrid scheme for convection terms. I use SEM method (Scalar Equation Method) in PHOENICS code.

So, If I simulate this case with a fixe cartesian mesh in BFC and with in BFC, I don't find the same results.

**With BFC**

TALK=T;RUN( 1, 1);VDU=x11-term

GROUP 1. Run title and other preliminaries

TEXT(Dam break : SEM)

INTEGER(NY1,NY2,NZ1,NZ2)

NX=1;NY1=100;NY2=100;NZ1=20;NZ2=3

NY=NY1+NY2

NZ=NZ1+NZ2

REAL(L1,L2,L3)

L1=500.0

L2=500.0

L3=L2+L1

GROUP 2. Transience; time-step specification

STEADY=F;

LSTEP=100 ;TLAST=20

GRDPWR(T,LSTEP,TLAST,1.0)

GROUP 3. X-direction grid specification

NREGX=1

IREGX=1;GRDPWR(X,NX,1,1.0);

GROUP 4. Y-direction grid specification

NREGY=2

IREGY=1;GRDPWR(Y,NY1,L1,1.0);

IREGY=2;GRDPWR(Y,NY2,L2,1.0);

GROUP 5. Z-direction grid specification

NREGZ=2;

IREGZ=1;GRDPWR(Z,NZ1,10,1.0);

IREGZ=2;GRDPWR(Z,NZ2,3,1.0);

GROUP 6. Body-fitted coordinates or grid distortion

BFC=T;SETBFC=T;MOVBFC=T

GROUP 7. Variables stored, solved & named

STORE(VOLU,CONI,CONJ,CONK)

STORE(DEN1,PRPS);

SOLVE(VFOL,SURN)

SOLUTN(P1,Y,Y,Y,N,N,N)

SOLUTN(V1,Y,Y,N,N,N,N)

SOLUTN(W1,Y,Y,N,N,N,N)

GROUP 8. Terms (in differential equations) & devices

** activate the "gas-and-liquid algorithm", ie volumetric

continuity equation, and allow convection fluxes to be

modified in GROUND

GALA=T;

TERMS(VFOL,N,N,N,N,P,P)

TERMS(SURN,N,N,N,N,P,P)

DIFCUT=0.0

UCONV=T

GROUP 9. Properties of the medium (or media)

** signal that density is to be computed by the HOL method

and set the densities of the liquid and gas respectively

RHO1=GRND10

ENUL=GRND10

GROUP 11. Initialization of variable or porosity fields

FIINIT(CONI)=0.0;FIINIT(CONJ)=0.0;FIINIT(CONK)=0.0

FIINIT(P1)=0.0;FIINIT(V1)=0.0;FIINIT(W1)=0.0;

FIINIT(SURN)=0.0; FIINIT(PRPS)=0.

FIINIT(DEN1)=1.189;

INIADD=F

PATCH(LIQUID,INIVAL,1,NX,1,NY1,1,NZ1,1,1)

init(LIQUID,SURN,ZERO,1)

init(LIQUID,VFOL,ZERO,1)

init(LIQUID,PRPS,ZERO,67)

init(LIQUID,DEN1,ZERO,1000.5)

GROUP 13. Boundary conditions and special sources ** the pressure is held to zero along the open top boundary

PATCH(REFP,CELL,1,NX,1,NY,NZ,NZ,1,LSTEP)

COVAL(REFP,P1,FIXVAL,ZERO)

** provide for the gravity-force source of w1

PATCH(GRAV,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP)

COVAL(GRAV,W1,FIXFLU,-9.81)

GROUP 15. Termination of sweeps

LSWEEP=50;

LITER(SURN)=1

GROUP 16. Termination of iterations

SELREF=T;RESFAC=0.01

GROUP 17. Under-relaxation devices

RELAX(P1,LINRLX,0.7)

RELAX(V1,FALSDT,0.1)

RELAX(W1,FALSDT,0.1)

GROUP 19. Data communicated by satellite to GROUND ** provide for the dumping of field data at each time

step, for us by PHOTON

USEGRX=T;USEGRD=F;LSG60=T

IDISPA=1;IDISPB=1;IDISPC=LSTEP;CSG1=W

CSG2=XYZ

IPRPSA=67;IPRPSB=0;

SURF=T;

RLOLIM=0.4;RUPLIM=0.6

VARMIN(SURN)=0.0; VARMAX(SURN)=1.0

ISG1=1

RSG1=0.0;RSG2=1.0

RSG3=0.0;RSG4=L3

RSG5=0.0;RSG6=13

RSG7=1.0;RSG8=1.0;

RSG9=1.0;RSG10=1.0;

RSG11=1.0;RSG12=1.0

RSG13=0.0;RSG14=0.0;RSG15=0.0

GROUP 22. Spot-value print-out

TSTSWP=-1

ECHO=T

IYMON=2*NY/3;IZMON=NZ/2

GROUP 23. Field print-out and plot control

OUTPUT(P1,N,N,N,N,Y,Y);OUTPUT(V1,N,Y,N,Y,Y,Y)

OUTPUT(W1,N,N,N,N,Y,Y);OUTPUT(SURN,N,N,N,N,N,N)

OUTPUT(DEN1,N,N,N,N,N,N) OUTPUT(VFOL,Y,N,N,N,Y,Y);

OUTPUT(IMB1,N,Y,N,Y,Y,Y); OUTPUT(ENUL,N,N,N,N,Y,Y);OUTPUT(RHO1,N,N,N,N,N,N)

OUTPUT(PRPS,N,N,N,N,N,N)

NTPRIN=100

NYPRIN=1

NZPRIN=1

IPROF=2

XZPR=T

STOP

**With out BFC**

TALK=T;RUN( 1, 1);VDU=X11-TERM

GROUP 1. Run title and other preliminaries

TEXT(Dam break: SEM)

INTEGER(NY1,NY2,NZ1,NZ2)

NY1=100;NY2=100;NZ1=20;NZ2=3

NY=NY1+NY2

NZ=NZ1+NZ2

GROUP 2. Transience; time-step specification

STEADY=F;

LSTEP=100 ;TLAST=20

GRDPWR(T,LSTEP,TLAST,1.0)

GROUP 4. Y-direction grid specification

NREGY=2

IREGY=1;GRDPWR(Y,NY1,500,1.0);

IREGY=2;GRDPWR(Y,NY2,500,1.0);

GROUP 5. Z-direction grid specification

NREGZ=2;

IREGZ=1;GRDPWR(Z,NZ1,10,1.0);

IREGZ=2;GRDPWR(Z,NZ2,3,1.0);

GROUP 7. Variables stored, solved & named

STORE(DEN1,PRPS);

SOLVE(VFOL,SURN)

SOLUTN(P1,Y,Y,Y,N,N,N)

SOLUTN(V1,Y,Y,N,N,N,N)

SOLUTN(W1,Y,Y,N,N,N,N)

GROUP 8. Terms (in differential equations) & devices ** activate the "gas-and-liquid algorithm", ie volumetric

continuity equation, and allow convection fluxes to be

modified in GROUND

GALA=T;

TERMS(VFOL,N,N,N,N,P,P)

TERMS(SURN,N,N,N,N,P,P)

GROUP 9. Properties of the medium (or media) ** signal that density is to be computed by the HOL method

and set the densities of the liquid and gas respectively

RHO1=GRND10

ENUL=GRND10

GROUP 11. Initialization of variable or porosity fields

FIINIT(P1)=0.0;FIINIT(V1)=0.0;FIINIT(W1)=0.0;

FIINIT(SURN)=0.0; FIINIT(PRPS)=0.

FIINIT(DEN1)=1.189;

INIADD=F

PATCH(LIQUID,INIVAL,1,NX,1,NY1,1,NZ1,1,1)

init(LIQUID,SURN,ZERO,1)

init(LIQUID,VFOL,ZERO,1)

init(LIQUID,PRPS,ZERO,67)

init(LIQUID,DEN1,ZERO,1000.5)

GROUP 13. Boundary conditions and special sources ** the pressure is held to zero along the open top boundary

PATCH(REFP,CELL,1,NX,1,NY,NZ,NZ,1,LSTEP)

COVAL(REFP,P1,FIXVAL,ZERO)

** provide for the gravity-force source of w1

PATCH(GRAV,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP)

COVAL(GRAV,W1,FIXFLU,-9.81)

GROUP 15. Termination of sweeps

LSWEEP=50;

LITER(SURN)=1

GROUP 16. Termination of iterations

SELREF=T;RESFAC=0.01

GROUP 17. Under-relaxation devices

RELAX(P1 ,LINRLX,0.7)

RELAX(V1,FALSDT,1)

RELAX(W1,FALSDT,1)

GROUP 19. Data communicated by satellite to GROUND ** provide for the dumping of field data at each time

step, for us by PHOTON

IDISPA=LSTEP;IDISPB=1;IDISPC=LSTEP;CSG1=W

IPRPSA=67;IPRPSB=0;

SURF=T;

RLOLIM=0.4;RUPLIM=0.6

VARMIN(SURN)=0.0; VARMAX(SURN)=1.0

GROUP 22. Spot-value print-out

TSTSWP=-1

ECHO=T

IYMON=2*NY/3;IZMON=NZ/2

GROUP 23. Field print-out and plot control

OUTPUT(P1,N,N,N,N,Y,Y);OUTPUT(V1,N,Y,N,Y,Y,Y)

OUTPUT(W1,N,N,N,N,Y,Y);OUTPUT(SURN,N,N,N,N,N,N)

OUTPUT(DEN1,N,N,N,N,N,N)

OUTPUT(VFOL,Y,N,N,N,Y,Y);

OUTPUT(IMB1,N,Y,N,Y,Y,Y)

OUTPUT(ENUL,N,N,N,N,Y,Y);OUTPUT(RHO1,N,N,N,N,N,N)

OUTPUT(PRPS,N,N,N,N,N,N)

NTPRIN=100

NYPRIN=1

NZPRIN=1

IPROF=2

XZPR=T

STOP

  Reply With Quote

Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
dam break problem Mary CFX 4 June 1, 2013 13:50
dam break problem sega Main CFD Forum 2 April 23, 2008 12:39
Dam break problem sega OpenFOAM Running, Solving & CFD 3 April 20, 2008 11:03
post processing dam break problem chris wetton CFX 7 February 22, 2008 07:33
Help! I want to break the symmetry of my problem David FLUENT 3 February 4, 2005 09:35


All times are GMT -4. The time now is 11:55.