CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Hypersonic simulation on nozzle convergent-divergent

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   October 17, 2015, 12:56
Default Hypersonic simulation on nozzle convergent-divergent
  #1
New Member
 
Antonio Lattanziu
Join Date: Jul 2013
Posts: 6
Rep Power: 12
tonino is on a distinguished road
Hi guys, I created a mesh within pointwise and am trying to do the simulations on a convergent-divergent nozzle considering the model of dissociation N2. When I do the simulation I get the following error:

----------------------------- Begin Solver -----------------------------
Segmentation fault (core dumped)

The boundary condition it is:

i=1: Subsonic inlet, pt = 100 atm, Tt = 5600 K (stagnation conditions)
i=IMAX: Free stream
j=1: Symmetry conditions
j=JMAX: Inviscid wall.

The configuration file it is:


COMPRESSIBLE FREE-STREAM DEFINITION

Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 23.9
%
% Angle of attack (degrees, only for compressible flows)
AoA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default)
FREESTREAM_PRESSURE= 19.7594
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 254.0
%
% Free-stream vibrational-electronic temperature (288.15 K by default)
FREESTREAM_TEMPERATURE_VE= 254.0
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 19500
%
% Reynolds length (1 m by default)
REYNOLDS_LENGTH= 1.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( Inviscid_wall )

MARKER_INLET= ( Inlet, 300, 19956.1, 1.0, 0.0, 0.0 )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( Inflow, Outflow, Top )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( Symmetry )

MARKER_OUTLET= ( Outlet, 101300 )

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( Wall )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( Wall )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( Wall )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 0.5
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 3000

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for the implicit (or discrete adjoint) formulation (LU_SGS,
% SYM_GAUSS_SEIDEL, BCGSTAB, GMRES)
LINEAR_SOLVER= FGMRES
%
% Linear solver preconditioner
LINEAR_SOLVER_PREC= LU_SGS
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-8
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 10

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.85
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.85

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= AUSM
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TNE2 NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (ROE, AUSM, HLLC)
CONV_NUM_METHOD_TNE2= AUSM
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_TNE2= 1ST_ORDER
%
% Slope limiter (VENKATAKRISHNAN)
SLOPE_LIMITER_TNE2= VENKATAKRISHNAN
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_TNE2= EULER_IMPLICIT

% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------%
%
% Geometrical evaluation mode (ANALYSIS, GRADIENT)
GEO_MODE= GRADIENT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 5
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY

the mesh it is:



I would be grateful for any help you could provide.

Thanks.
tonino is offline   Reply With Quote

Old   October 22, 2015, 11:24
Default
  #2
Super Moderator
 
Tim Albring
Join Date: Sep 2015
Posts: 195
Rep Power: 10
talbring is on a distinguished road
Hi tonino,

the most important part is missing: what about the math problem options (probably just a copy & paste thing).


Then you reference some boundary markers that are not existent in your mesh I guess (Wall, Inflow, Outflow, Top). So remove the option MARKER_FAR and set MARKER_{PLOTTING, MONITORING, DESIGNING) to ( Inviscid_Wall ).

Maybe this already helps.
talbring is offline   Reply With Quote

Old   November 19, 2016, 06:26
Default Please help
  #3
New Member
 
Amitava Mandal
Join Date: Oct 2016
Posts: 6
Rep Power: 9
amitavamandal is on a distinguished road
In regard to the above mentioned problem, I have the following queries.
1. Reynold no, corresponding to which condition?
2. Which is the ideal boundary condition for this case i.e. supersonic or pressure boundary?
Regards
Amitava Mandal
amitavamandal is offline   Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
having trouble modelling basic convergent water nozzle flow derhamp STAR-CCM+ 1 January 14, 2016 16:37
Residuals high for 2D Convergent divergent nozzle simulation jphoenix FLUENT 0 November 11, 2014 08:12
Need help with a rocket nozzle simulation badboyz31 CFX 14 September 22, 2014 00:06
Jet exhaust from the nozzle simulation Krafta OpenFOAM 0 September 2, 2014 12:30
mass flow rate issue in supersonic nozzle simulation xkang FLUENT 0 July 31, 2014 16:06


All times are GMT -4. The time now is 19:24.