CFD Online Discussion Forums

CFD Online Discussion Forums (https://www.cfd-online.com/Forums/)
-   SU2 (https://www.cfd-online.com/Forums/su2/)
-   -   SU2 7.5.1 AUSMPLUSM Invalid upwind scheme (https://www.cfd-online.com/Forums/su2/247481-su2-7-5-1-ausmplusm-invalid-upwind-scheme.html)

giovanni.medici February 7, 2023 10:52

SU2 7.5.1 AUSMPLUSM Invalid upwind scheme
 
First of all thanks to all developers for another interesting update of SU2.
I was giving a try to one of the new experimental features introduced, AUSM+M, and but SU2 exits in the initialization with an error :

Code:

Error in "void CDriver::Numerics_Preprocessing(CConfig*, CGeometry**, CSolver***, CNumerics****&) const":
-------------------------------------------------------------------------
Invalid upwind scheme or not implemented.
------------------------------ Error Exit -------------------------------

I'd say that very likely it is due to an ill choice in the configuration file, I tried different options without luck (like first order, MUSCL_FLOW=NO, VENKATAKRISHNAN, VAN_ALBADA_EDGE).

Any clue on what I'm missing? Below you can find the cfg file.

Thanks a lot!


Code:


% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                              WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
%                              POISSON_EQUATION, NEMO_NAVIER_STOKES)
SOLVER= EULER
%
%
MATH_PROBLEM= DIRECT
RESTART_SOL= NO
%
AXISYMMETRIC= YES

% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 5
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0

%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
% INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 270.65
%
%FREESTREAM_TEMPERATURE_VE= 270.65
%
% Free-stream pressure (101325.0 N/m^2 by default)
FREESTREAM_PRESSURE= 670.79
%
% Reynolds number (non-dimensional, based on the free-stream values)
%REYNOLDS_NUMBER= 10000
KIND_TURB_MODEL= NONE

% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, MUTATIONPP SU2_NONEQ)
FLUID_MODEL= STANDARD_AIR

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
%
% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
%                              FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= FREESTREAM_VEL_EQ_ONE


% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
MARKER_EULER= ( Body, Back )
MARKER_OUTLET= ( Outlet, 670.79 )
MARKER_SUPERSONIC_INLET= ( Inlet, 270.65, 670.79, 1649.01 , 0, 0)
MARKER_PLOTTING= (Body, Back )
MARKER_MONITORING= (Body, Back )
MARKER_SYM = ( Symmetry )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
CFL_NUMBER= 0.5

% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor-down, factor-up, CFL min value,
%                                        CFL max value, acceptable linear solver convergence)
% Local CFL increases by factor-up until max if the solution rate of change is not limited,
% and acceptable linear convergence is achieved. It is reduced if rate is limited, or if there
% is not enough linear convergence, or if the nonlinear residuals are stagnant and oscillatory.
% It is reset back to min when linear solvers diverge, or if nonlinear residuals increase too much.
CFL_ADAPT_PARAM= ( 0.1, 2.0, 10.0, 1e10, 0.001 )

% Number of total iterations
ITER= 500000
%

% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.05
%
% Coefficient for the sharp edges limiter
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= NO

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
LINEAR_SOLVER= BCGSTAB
LINEAR_SOLVER_ERROR= 1E-6
LINEAR_SOLVER_ITER= 5

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
%                              TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= AUSMPLUSM

% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
MUSCL_FLOW= NO
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
%                BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= VAN_ALBADA_EDGE
%VENKAT_LIMITER_COEFF= 0.05

TIME_DISCRE_FLOW= EULER_EXPLICIT
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
CONV_RESIDUAL_MINVAL= -15
CONV_STARTITER= 10

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
MESH_FILENAME= Mesh.su2
MESH_FORMAT= SU2
SOLUTION_FILENAME= restart_flow.dat 
TABULAR_FORMAT= CSV
CONV_FILENAME= convergence
RESTART_FILENAME= restart_flow.dat
VOLUME_FILENAME= soln_volume
SURFACE_FILENAME= soln_surface   
OUTPUT_WRT_FREQ= 5000
SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY_0, RMS_DENSITY_1, RMS_DENSITY_2, RMS_DENSITY_3, RMS_DENSITY_4, RMS_ENERGY, RMS_ENERGY_VE, LIFT, DRAG, TOTAL_HEATFLUX)
HISTORY_OUTPUT= (ITER, RMS_RES, AERO_COEFF)
OUTPUT_FILES= (RESTART, PARAVIEW, SURFACE_PARAVIEW)


bigfootedrockmidget February 7, 2023 13:22

Quote:

AUSMPLUSUP, /*!< \brief AUSM+ -up numerical method (All Speed) */
AUSMPLUSUP2, /*!< \brief AUSM+ -up2 numerical method (All Speed) */
AUSMPLUSM, /*!< \breif AUSM+M numerical method. (NEMO Only)*/

For +M, you need to use NEMO_EULER


For setups, you can start with the regression testcases that come with SU2.
The ausm test cases are here:
https://github.com/su2code/SU2/tree/...brium/invwedge
meshes are here:
https://github.com/su2code/TestCases...brium/invwedge

giovanni.medici February 7, 2023 14:22

Oh yeah, thank you @bigfootedrockmidget, you are right, in the github post referenced in the release notes (https://github.com/su2code/SU2/pull/1773), there are indeed, as validation transational-rotational, and vibrational-electronic temperatures!

I should have thought about that!

wallym February 8, 2023 08:43

Hi,

As @bigfootedrockmidget mentioned, AUSM+M is only available as a NEMO feature. However, I expected that the implementation for an ideal gas would be straight-forward! This is my plug to grab developers ;)


All times are GMT -4. The time now is 20:41.