You are looking at the HTML representation of the XML format.
HTML is good for debugging, but probably is not suitable for your application.
See complete documentation, or API help for more information.
<?xml version="1.0"?>
<api>
  <query-continue>
    <allpages gapfrom="Reference section" />
  </query-continue>
  <query>
    <pages>
      <page pageid="2766" ns="0" title="Realisability and Schwarz&#039; inequality">
        <revisions>
          <rev xml:space="preserve">{{Turbulence modeling}}Realisability is the minimum requirement to prevent a turbulence model generating non-physical results. For a model to be realisable the normal Reynolds stresses must be non-negative and the Schwarz' inequality must be satisfied between fluctuating quantities:

:&lt;math&gt;
\left\langle{u^'_\alpha u^'_\alpha}\right\rangle \geq 0
&lt;/math&gt;

:&lt;math&gt;
\frac{\left\langle{u^'_\alpha u^'_\beta}\right\rangle}{ \left\langle{u^'_\alpha u^'_\beta}\right\rangle \left\langle{u^'_\alpha u^'_\beta}\right\rangle} \leq 1
&lt;/math&gt;

where there is no summation over the indices. Some workers only apply the first inequality to satisfy realisability, or maintain non-negative vales of k and epsilon. This &quot;weak&quot; form of realisability is satisfied in non-linear models by setting &lt;math&gt;C_\mu=0.09&lt;/math&gt;.

==References==
{{reference-paper|author=Speziale, C.G.|year=1991|title=Analytical methods for the development of Reynolds-stress closures in turbulence|rest=Ann. Rev. Fluid Mechanics, Vol. 23, pp107-157}}</rev>
        </revisions>
      </page>
      <page pageid="1514" ns="0" title="Realisable k-epsilon model">
        <revisions>
          <rev xml:space="preserve">{{Turbulence modeling}}
== Transport Equations ==


:&lt;math&gt; \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_j} (\rho k u_j) = \frac{\partial}{\partial x_j} \left [ \left(\mu + \frac{\mu_t}{\sigma_k}\right) \frac{\partial k} {\partial x_j} \right ] + P_k + P_b - \rho \epsilon - Y_M + S_k &lt;/math&gt;


:&lt;math&gt; \frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_j} (\rho \epsilon u_j) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_{\epsilon}}\right) \frac{\partial \epsilon}{\partial x_j} \right ] + \rho \, C_1 S \epsilon - \rho \, C_2 \frac{{\epsilon}^2} {k + \sqrt{\nu \epsilon}} + C_{1 \epsilon}\frac{\epsilon}{k} C_{3 \epsilon} P_b + S_{\epsilon} &lt;/math&gt;

Where &lt;br&gt;

&lt;math&gt; C_1  =  \max\left[0.43, \frac{\eta}{\eta + 5}\right] , \;\;\;\;\; \eta  =  S \frac{k}{\epsilon}, \;\;\;\;\; S =\sqrt{2 S_{ij} S_{ij}} &lt;/math&gt; &lt;br&gt;

In these equations, &lt;math&gt; P_k &lt;/math&gt; represents the generation of turbulence kinetic energy due to the mean velocity gradients, calculated in same manner as standard k-epsilon model. &lt;math&gt; P_b &lt;/math&gt; is the generation of turbulence kinetic energy due to buoyancy, calculated in same way as standard k-epsilon model.

== Modelling Turbulent Viscosity ==

:&lt;math&gt; \mu_t = \rho C_{\mu} \frac{k^2}{\epsilon} &lt;/math&gt; &lt;br&gt;
where &lt;br&gt;
&lt;math&gt; C_{\mu} = \frac{1}{A_0 + A_s \frac{k U^*}{\epsilon}} &lt;/math&gt; &lt;br&gt;
&lt;math&gt;  U^* \equiv \sqrt{S_{ij} S_{ij} + \tilde{\Omega}_{ij} \tilde{\Omega}_{ij}}  &lt;/math&gt;  ;&lt;br&gt;
&lt;math&gt; \tilde{\Omega}_{ij}  =  \Omega_{ij} - 2 \epsilon_{ijk} \omega_k     &lt;/math&gt; ; &lt;br&gt;
&lt;math&gt;  \Omega_{ij}  =  \overline{\Omega_{ij}} - \epsilon_{ijk} \omega_k     &lt;/math&gt; &lt;br&gt;

where &lt;math&gt; \overline{\Omega_{ij}} &lt;/math&gt;  is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular velocity &lt;math&gt; \omega_k  &lt;/math&gt;. The model constants  &lt;math&gt; A_0  &lt;/math&gt; and &lt;math&gt; A_s  &lt;/math&gt; are given by: &lt;br&gt;
&lt;math&gt; A_0 = 4.04, \; \;  A_s = \sqrt{6}  \cos \phi &lt;/math&gt; &lt;br&gt;

&lt;math&gt;  \phi = \frac{1}{3} \cos^{-1} (\sqrt{6} W), \; \;    W = \frac{S_{ij} S_{jk} S_{ki}}{{\tilde{S}} ^3}, \; \; \tilde{S} = \sqrt{S_{ij} S_{ij}}, \; \; S_{ij} = \frac{1}{2}\left(\frac{\partial u_j}{\partial x_i}  + \frac{\partial u_i}{\partial x_j} \right)   &lt;/math&gt;


==Model Constants ==

&lt;math&gt; C_{1 \epsilon} = 1.44,  \;\; C_2 = 1.9, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.2  &lt;/math&gt;


== References ==

See section [[K-epsilon_models#References|References]] in the parent page [[K-epsilon models]].

[[Category:Turbulence models]]</rev>
        </revisions>
      </page>
    </pages>
  </query>
</api>