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resumo 
 
 

Os métodos habitualmente utilizados para a simulação de injecção em 
moldes envolvem um número considerável de simplificações, originando 
reduções significativas do esforço computacional mas, nalguns casos 
também limitações. Neste trabalho são efectuadas simulações de Reaction 
Injection Moulding (RIM) com o mínimo de simplificações, através da 
utilização do software de CFD multi-objectivos CFX, concebido para a 
simulação numérica de escoamentos e transferência de calor e massa. 

Verifica-se que o modelo homogéneo para escoamentos multifásicos do 
CFX, geralmente considerado o apropriado para a modelação de 
escoamentos de superfície livre em que as fases estão completamente 
estratificadas, é incapaz de modelar correctamente o processo de 
enchimento. Este problema é ultrapassado através da implementação do 
modelo não homogéneo juntamente com a condição de fronteira de 
escorregamento livre para o ar. 

A reacção de cura é implementada no código como uma equação de 
transporte para uma variável escalar adicional, com um termo fonte. São 
testados vários esquemas transitórios e advectivos, com vista ao 
reconhecimentos de quais os que produzem os resultados mais precisos. 

Finalmente, as equações de conservação de massa, quantidade de 
movimento, cura e energia são implementadas conjuntamente para simular 
os processos simultâneos de enchimento e cura presentes no processo 
RIM. Os resultados numéricos obtidos reproduzem com boa fidelidade 
outros resultados numéricos e experimentais disponíveis, sendo 
necessários no entanto tempos de computação consideravelmente longos 
para efectuar as simulações. 
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abstract 
 

Commonly used methods for injection moulding simulation involve a 
considerable number of simplifications, leading to a significant reduction of 
the computational effort but, in some cases also to limitations. In this work, 
Reaction Injection Moulding (RIM) simulations are performed with a 
minimum of simplifications, by using the general purpose CFD software 
package CFX, designed for numerical simulation of fluid flow and heat and 
mass transfer. 

The CFX’s homogeneous multiphase flow model, which is generally 
considered to be the appropriate choice for modelling free surface flows 
where the phases are completely stratified and the interface is well defined, 
is shown to be unable to model the filling process correctly. This problem is 
overcome through the implementation of the inhomogeneous model in 
combination with the free-slip boundary condition for the air phase. 

The cure reaction is implemented in the code as a transport equation for an 
additional scalar variable, with a source term. Various transient and 
advection schemes are tested to determine which ones produce the most 
accurate results. 

Finally, the mass conservation, momentum, cure and energy equations are 
implemented all together to simulate the simultaneous filling and curing 
processes present in the RIM process. The obtained numerical results 
show a good global accuracy when compared with other available 
numerical and experimental results, though considerably long computation 
times are required to perform the simulations. 
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 Nomenclature          

Symbols:  

A Area [m2] 

A Constant in the viscosity equation [–] 

Aαβ Interfacial area per unit volume [m-1] 

Aμ Pre-exponential factor in the viscosity equation [kg/(m⋅s)] 

A1 Pre-exponential factor in the cure equation [s-1] 

A2 Pre-exponential factor in the cure equation [s-1] 

B Constant in the viscosity equation [–] 

cs Control volume  

cs Surface of the control volume  

C Degree of cure [–] 

CD Drag coefficient [–] 

Cg Solidification (gel) point [–] 

Cp Specific heat at constant pressure [J/(kg⋅K)] 

Cr Courant number [–] 

Cv Specific heat at constant volume [J/(kg⋅K)] 

dαβ Interface length scale [m] 

Dh Hydraulic diameter [m] 

e Specific internal energy [J/kg] 

Eμ Viscosity activation energy [J/mol] 

E1 Reaction activation energy [J/mol] 

E2 Reaction activation energy [J/mol] 

f Face  

F Force [N] 

Fg  Gravity force vector [N] 

Fw Wall shear force [N] 
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g  Gravity acceleration vector [m/s2] 

h Mould half thickness [m] 

h Specific enthalpy [J/kg] 

htot Specific total enthalpy [J/kg] 

H Mould thickness [m] 

k Thermal conductivity [W/(m⋅K)] 

k1 Parameter in the cure equation [s-1] 

k2 Parameter in the cure equation [s-1] 

L Mould length [m] 

Lf Position of the flow front [m] 

m Constant in the cure reaction [–] 

m Mass [kg] 

m  Mass flow [kg/s] 

Mαβ  Volumetric interface momentum transfer [N/m3] 

n Constant in the cure reaction [–] 

n  Outward normal surface vector [–] 

N Shape function  

P, p Pressure [Pa] 

P Perimeter [m] 

Q Volumetric flow rate [m3/s] 

RQ  Volumetric heat generation rate [W/m3] 

Qt Total volumetric heat of reaction [J/m3] 

r Volume fraction [–] 

R Universal gas constant [J/(mol⋅K)] 

R  Vector from the upwind node to ip [m] 

Re Reynolds number [–] 

S Cross section  

S Fluidity [m⋅s] 

S Surface  
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SC Rate of cure [s-1] 

SCp Linear source coefficient in the cure equation [s-1] 

SCv Source value in the cure equation [s-1] 

SE Volumetric heat source [W/m3] 

SEp Linear source coefficient in the energy equation [W/(m3⋅K)] 

SEv Source value in the energy equation [W/m3] 

MS  Volumetric momentum source [N/m3] 

t Time [s] 

tf Filling time [s] 

tR Time of residence [s] 

T Period [s] 

T Temperature [K] 

Ti Initial temperature [K] 

u Velocity x component [m/s] 

U  Velocity vector [m/s] 

v Velocity y component [m/s] 

V Volume [m3] 

w Velocity z component [m/s] 

W Mould width [m] 

Wv Volumetric viscous work rate [W/m3] 

x x direction [m] 

y y direction [m] 

z z direction [m] 

   

   

Greek symbols:  

β Blend factor for the advection term discretization [–] 

γ Shear rate [s-1] 

δ Identity matrix  
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Δt Time step [s] 

ΔTad Adiabatic temperature rise [K] 

Δx Length of the mesh elements [m] 

θ Quotient between the old and the new time step [–] 

μ Viscosity [kg/(m⋅s)] 

ρ Density [kg/m3] 

τw Wall shear stress [N/m2] 

φ General variable  

   

   

Subscripts:  

air Air  

in Inlet  

ip Integration point  

max Maximum value  

n Node  

out Outlet  

ref Reference  

resin Resin  

up Upwind node  

w Wall  

x x component of the vector  

y y component of the vector  

z z component of the vector  

α Phase α  

β Phase β  
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Superscripts:  

CFX Results from CFX  

hom Homogeneous model  

 inhom Inhomogeneous model  

0 Old time level  

00 Time before the old time level  

   

   

Operators:  

 • Inner product  

⊗  Tensor product  

∇  Nabla vector  

TX  Transpose of X 

  

  

Others: 
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1   Introduction          

1.1 Overview of the RIM process 

The application of synthetic polymeric materials, which are nowadays commonly used in 
all of the major market sectors, experienced a dramatic expansion in the second half of the 
20th century. Due to the continuous progress made in polymeric engineering, these 
materials can be synthesized to meet a wide range of mechanical, chemical, optical and 
electrical properties. Their low density, resulting in a relatively high specific strength and 
stiffness, their aptitude to be manufactured into complex shaped parts and, more important, 
their ability to be integrated in automatic mass production processes, which together with 
the relatively low cost of raw material, lead to the low cost of the final product, make these 
materials very attractive, specially from an economical point of view. 
 Amongst the various polymer processing techniques, injection moulding is 
certainly one of the most important, representing approximately one third of all 
manufactured polymeric parts [1, 2]. Extrusion represents approximately another third 
(32% and 36% of weight, respectively [1]). 
 Synthetic polymers can be classified in two major categories: thermoplastic 
polymers and thermosetting polymers. For thermoplastics, by far the largest volume (about 
80% of the raw material used in injection moulding [3]), the long molecules are not 
chemically joined, and thus they can be melted by heating (typically 200-350 ºC [3]), 
solidified by cooling and remelted repeatedly. Thermosets are initially made of short chain 
molecules, and upon heating or mixing with appropriate reagents, they undergo an 
irreversible chemical reaction which causes the short chain molecules to bond. This 
process leads to the formation of a rigid three-dimensional structure, which once formed 
will not remelt by heating [2, 4].  
 In Thermoplastics Injection Moulding (TIM), the hot polymer melt is pushed at 
high pressure into a cold cavity where it undergoes solidification by cooling down below 
the glass transition temperature. Although this process is extensively used for non-specific 
and undemanding applications, it presents some weaknesses which limit its use for more 
technical parts. Thermoplastics usually have lower mechanical properties than 
thermosetting polymers. Their relatively high viscosity (usually exceeding 100 kg/(m⋅s) 
[2]) requires high injection pressures (typically 50-200 MPa [3]), limiting the dimensions 
of parts to typically 1 m2. High viscosity also limits the use of reinforcements, which are 
necessary to meet more demanding requirements, and the production of parts with complex 
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shapes. In order to overcome these limitations, reactive moulding techniques have been 
developed for thermosetting polymers [2]. 
 Reactive moulding is quite different from conventional TIM, since it uses 
polymerization in the mould, instead of cooling, to form the stiff solid parts. 
 Reaction Injection Moulding (RIM) is a process for rapid production of complex 
parts through the mixing and chemical reaction of two or more components. The liquid 
components, usually isocyanate and polyol, held in separated temperature controlled tanks, 
feed to metering units. When injection begins, the valves open and the components flow at 
moderate to high pressures, typically between 10 and 20 MPa, into a mixing chamber. The 
streams are intensively mixed by high velocity impingement and due to the shape of the 
mixing chamber, and the mixture begins to polymerize, or cure, as it flows into the mould 
cavity. As the mixture is initially at low viscosity, low pressures, less than 1 MPa, are 
needed to fill the mould, typically in less than five seconds. Inside the mould, cure occurs, 
forming the polymer, solidifying and building up enough stiffness and strength such that 
the mould can be opened and the part removed, often in less than one minute. Postcuring 
may be necessary [5, 6]. Fig. 1 [7] shows the diagram of a typical RIM process. 

 
Fig. 1: Diagram of a typical RIM process [7]. 
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During RIM’s early years, its main use was for high density rigid polyurethane 
foam parts for the automotive industry, such as bumpers and fascia. Over the years it has 
developed uses in many different areas. The end use applications for RIM are nowadays so 
varied that polyurethane can be found in forms such as protective coatings, flexible foams, 
rigid foams and elastomers. Although polyurethanes comprise the majority in RIM 
processing, other types of chemical systems can be processed, for instance polyureas, 
nylons, dicyclopentadienes, polyesters, epoxies, acrylics and hybrid urethane systems [8]. 

Due to the low viscosity RIM liquids, ranging from 0.1 to 1 kg/(m⋅s), large parts 
can be manufactured with relatively small metering machines, complex shapes, with 
multiple inserts, can be fabricated and low pressures can be used to fill the moulds, and 
these may be constructed from light-weight materials often at lower costs than for TIM. 
Mould clamping forces are much lower, requiring lower cost presses. This opens up short 
production runs, and even prototype applications [5]. Low viscosity also opens options in 
reinforcement as Structural Reaction Injection Moulding (SRIM), and Reinforced Reaction 
Injection Moulding (RRIM) [8]. 
 RIM temperatures are typically lower than those for TIM, with less energy 
demands [5]. However, handling of reactive, and often hazardous liquids, requires special 
equipments and procedures. As some components freeze at room temperature, a 
temperature controlled environment is required for their shipping and storage, increasing 
the costs. Due to the low viscosity, it is difficult to seal moulds, increasing leakage and 
flash. As low viscosity liquids penetrate mould surfaces, there is the need for release 
agents, which has been a major problem for high RIM production. 
 If flow into the mould is too rapid, air may be entrained and large bubbles appear in 
the final part, which is perhaps the greatest cause of scrap. Also, due to low pressure 
during filling, it is difficult to remove air from pockets formed behind inserts and from 
corners. Thus, vent location becomes extremely important. Some of these problems can be 
prevented if moulds are filled slowly, but this can lead to short shots. 
  As asserted by [9], “Successful moulders must use RIM long enough to learn all the 
peculiarities of chemical manipulation, mould manufacture, and processing parameters. 
These typically differ for each project, resulting in a long learning curve for the few 
companies that choose to offer RIM-produced products”. This is why a better 
understanding of the injection and curing processes is important. Numerical simulations of 
these processes may be helpful to choose the chemical components, to design the mould, 
its position and vents location, and to design the process itself: shot time and inlet and 
mould temperatures. 
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1.2 Literature review 

1.2.1 Injection moulding 

As mentioned in [3] and [10], the first attempts to study the filling stage in injection 
moulding were reported by Spencer and Gilmore [11]. They visually studied the filling of 
the mould and derived an empirical equation to determine the filling time. Other important 
early flow visualization and tracer studies include the contributions from [12] and [13]. 
 Numerical simulations applied to injection moulding have basically started in the 
early 1970s. According to [2] and [14], these first developments were applied to the filling 
stage in simple geometries [15–23]. Only tubular, circular and rectangular shapes were 
considered, allowing the flow to be accurately assumed as unidirectional. The temperature 
field was two-dimensional, one coordinate in the flow direction and the other in the 
thickness direction, leading to the so-called 1½D approach. The injected polymer was 
assumed to be a Newtonian fluid, and finite difference techniques were used to numerically 
solve the set of balance equations. 
 In [15], one-dimensional flow analysis was coupled with a heat balance equation 
for a rectangular cavity. The work presented in [16, 17] dealt with the filling of a disc 
mould, using the assumption of a radial creeping flow, and [21] modelled one-dimensional 
tubular flow of polymer melts. 
 In order to expand the previous approaches to more realistic geometries, conformal 
mapping [24–26] or decomposition of complex shape cavities in a number of simple 
elements [27, 28] were used to extend the 1½D approach to more complex flow situations. 
However, these methods lack sufficient generality to be satisfactory and the solution 
accuracy strongly depends on how the geometry is partitioned, requiring astute judgment 
from the user. 
 The real breakthrough came with the development of a general 2½D approach, 
originally proposed in [29], combining finite elements along the midsurface of the cavity 
with finite differences along the thickness direction. The pressure field was solved in two 
dimensions by finite element method and the temperature and velocity fields were solved 
in three dimensions by means of a mixed finite element / finite difference method. 
 However, based on the Hele-Shaw approximation, the 2½D approach was unable to 
represent the complex flow kinematics of the flow front region, the so-called fountain 
flow, see Fig. 2 [30], first reported in [31]. The description of this phenomenon was 
addressed by many authors by means of experimental [32–36], analytical [37–39] and 
numerical [33, 40−45] methods, leading to approximate models able to capture its basic 
flow kinematics without resolving the complex 3D flow details. 
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(a) (b) 

Fig. 2: Kinematics of fountain flow. 
(a) Reference frame of mould; (b) Reference frame of the moving flow front. [30] 

 Different techniques have been used to handle the time-dependency of the flow 
domain during filling. One solution consisted in the use of the control volume method 
[46-48], while alternative solutions included the use of boundary fitted coordinates [49, 50] 
or the use of a front tracking and remeshing techniques [51–53]. 
 To date several commercial and research three-dimensional simulation programs 
for injection moulding have been developed. In particular, [54] developed a three-
dimensional finite-element code for predicting the velocity and pressure fields governed by 
the generalized Navier-Stokes equations, [55] analysed the three-dimensional mould filling 
of an incompressible fluid and the shape of the fountain flow front, [56, 57] incorporated 
the polymer compressibility, by treating its density as a function of temperature and 
pressure, in a three-dimensional mould filling process. 

1.2.2 Reaction Injection Moulding 

As both thermoplastics and reaction injection moulding are basically governed by the same 
flow kinematics, most of the developments made in the simulation of the filling stage of 
thermoplastics are applicable to reaction injection moulding. 

Early studies were dedicated to the static analysis of heat transfer and cure, on the 
assumption that the curing stage could be decoupled from the filling stage [58, 59]. More 
realistic models were obtained by extending the 1½D approach to reaction injection 
moulding [39, 60–66]. The work of Castro and Macosko [39], presenting experimental and 
numerical results was of particular importance, it was considered by many authors as a 
benchmark solution (it is used also in this work, in Section 4.2 and Section 4.3, as a 
benchmark solution).  
 Extensions to the 2½D approach were only reported more recently [2, 67–71], and 
3D simulations have already been reported in some works [72–76]. 
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1.3 The 2½D Hele-Shaw flow approach 

Despite many commercial codes’ ability to perform 3D injection moulding simulations, the 
2½-dimensional Hele-Shaw approach remains the standard numerical framework for 
simulation of injection moulding. Therefore, it becomes important to succinctly describe 
its assumptions and formulation, and to discuss its advantages and limitations relatively to 
a full three-dimensional approach. 
 Injection moulding is generally characterized by the part thickness being much 
smaller than its overall dimensions and by the high viscosity of the polymer (the latter is 
not entirely valid for RIM resins), resulting in low ratios of the inertia force to the viscous 
forces (characterized by low Reynolds numbers). In the Hele-Shaw flow formulation, the 
inertia effect and the velocity component and thermal convection in the gap-wise direction 
are neglected. Moreover, due to small thickness of the part, the velocity gradient in the 
gap-wise direction is considered to be much larger than in the other directions. Thus, 
denoting the planar coordinates by x and y, the gap-wise coordinate by z, and the velocity 
components by u, v and w, respectively, the continuity and momentum equations are 
reduced to [77, 78]: 

 ( ) ( )u v
0

t x y
∂ ρ ⋅ ∂ ρ ⋅∂ρ

+ + =
∂ ∂ ∂

    (1) 

 p u 0
x z z

⎛ ⎞∂ ∂ ∂
− + μ ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2) 

 p v 0
y z z

⎛ ⎞∂ ∂ ∂
− + μ ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3) 

The boundary conditions for u and v are [77]: 

 u v 0 at z h on mold wall( )= = = ±  (4) 

 u v 0 at z 0 on middle plane
z z

∂ ∂
= = =

∂ ∂
( )  (5) 

As the pressure is independent of the z direction, by integrating twice equations 
(2) and (3), and taking into account the boundary conditions, one arrives to: 

 
h
z

p zu dz
x

∂
= − ⋅

∂ μ∫  (6) 

 
h
z

p zv dz
y

∂
= − ⋅

∂ μ∫  (7) 
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 By integrating equation (1) between z = 0 and z = h, the continuity and momentum 
equations are merged into a single Poisson-like equation in terms of pressure and fluidity 
[14, 77]: 

 
h
0

p pdz S S 0
t x x y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ρ − ⋅ − ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫  (8) 

where S is the fluidity, expressed as [77]: 

 
2h

0
zS dz= ρ ⋅
μ∫  (9) 

 The two above equations could be even further simplified if assuming constant 
polymer density. 

The gap-wise direction averaged velocities may be obtained as: 

 

2h
0

z dz
pu
x h

∂ μ= − ⋅
∂

∫
 (10) 

 

2h
0

z dz
pv
y h

∂ μ= − ⋅
∂

∫
 (11) 

Besides the velocity and heat convection in the gap-wise direction being omitted, 
the heat conduction in the flow directions is assumed to be negligible when compared with 
that in the gap-wise direction [14, 78]. The energy equation is then simplified to [77]: 

 2
R

T T T TCp u v k Q
t x y z z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
ρ ⋅ ⋅ + ⋅ + ⋅ = ⋅ + μ ⋅ γ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (12) 

The term (μ⋅ γ 2) represents the heat generated by viscous dissipation, and RQ  the rate of 

heat generation due to chemical reaction. γ  is the shear rate, which, according to the 
assumptions mentioned above, is expressed as [79]: 

 
2 2u v

z z
⎛ ⎞ ⎛ ⎞∂ ∂

γ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (13) 

or: 

 
2 2z p p

x y
⎛ ⎞ ⎛ ⎞∂ ∂

γ = ⋅ +⎜ ⎟ ⎜ ⎟μ ∂ ∂⎝ ⎠ ⎝ ⎠
 (14) 
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However, for typical RIM situations, the viscous dissipation term in the energy equation 
can be neglected when compared to the heat generation term due to the cure reaction [39, 
80].  

Equations (8) and (12) for pressure and temperature, are the basic equations of the 
Hele-Shaw approximation for mould filling in thin cavities [78]. Equation (8) is commonly 
solved by the finite-element method and equation (12) by the finite-difference method 
[14]. 

Due to the Hele-Shaw formulation assumptions and simplifications mentioned 
above, the usage of computational storage and CPU time can be considerably reduced 
when compared with the case of a full three-dimensional (unsteady) formulation. But, 
although its successful applications to the injection moulding process, it has its limitations 
mostly owing to those assumptions [14]. 

The inertia and three-dimensional effects may become significant enough to 
influence the flow, especially in complex thick parts, in situations of branching flow, 
where the part thickness changes abruptly, or in regions around special features such as 
bosses, corners and ribs. For the RIM process, because of resins small viscosities, the fluid 
inertia and the gravity force cannot be omitted [14]. 
 At the filling front, the fluid moves away from the centre, spilling out like a 
fountain to the walls [5] (thus the designation “fountain flow”), and therefore the flow is as 
important in the transverse as in the planar directions. Simple fountain flow 
approximations have been implemented with the Hele-Shaw formulation. However, in 
view of its importance in RIM, since it determines the path and the location of each 
reactive fluid element during filling, a three-dimensional formulation is expected to 
provide more detailed and accurate information [14]. 

1.4 Motivation and objectives 

The core objective of this work is to assess the potential of the commercial general-purpose 
CFD software, CFX-5 (recently renamed ANSYS CFX), a fully implicit, unstructured, 
node centred, finite-volume based code, to simulate the complete three-dimensional 
behaviour of the RIM simultaneous filling and curing processes. 

Because of the inherent RIM process and parts characteristics, such as resins’ low 
viscosities, common complex geometries possibly with the presence of inserts, together 
with the importance to accurately determine the flow behaviour at the flow front region, a 
full 3D approach seems to be much more valuable, relatively to the 2½D approach, than in 
simulations of the TIM process. 
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 Despite the existence of commercial injection moulding software packages able to 
perform 3D mould filling analysis, the 2½D approach, as previously mentioned, is still the 
standard analysis in injection moulding simulations and, extremely little has been made 
regarding the simulation of this important kind of industrial process making use of general-
purpose CFD software packages. 
 Although three-dimensional simulations for injection moulding are still notorious 
for their excessive computation time requirements, as computer performances increase 
they are anticipated to increase in the near future [14]. It is reported in [81] that in 2003 the 
same CFD problem could be run over 100 times faster than in 1996 (7 years before), a 
factor of 30 due to increase in processors speed (double every 18 months, as stated by the 
modern and most popular formulation of the Moore’s law [82]), and the remaining due to 
enhancements in numerical methods and faster solver algorithms. Additionally, the 
possibility to run calculations on a network of PCs, something unavailable not too long 
ago, and improvements in parallel computing algorithms, will tend towards faster time 
solutions to many CFD problems [81] at relatively low hardware costs. 

Commercial multi-purpose CFD software packages are usually cheaper than 
commercial specialized injection moulding packages, and are able to perform numerical 
simulations of many other varieties of processes, making them a much more versatile and 
valuable tool than the specialized packages usual in injection moulding. 
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2   Simulation of the filling process     

2.1 The homogeneous model 

2.1.1 Physical model  

The process of an enclosed volume being filled with a fluid A and displacing the original 
fluid B, usually air, is common in engineering practice. The filling of a mould is an 
example of it. This process on its own, even not considering the energy and the chemical 
reaction, is complex, as it is a transient two-phase free surface flow. 

For this type of flows, where the phases are completely stratified and the interface 
is well defined, it makes sense to assume that both phases share a single velocity field [83]. 
Thus, choosing the homogeneous model of CFX, the flow is described by [83]: 
the equation of conservation of total mass: 

 U 0
t

( )∂ρ
+ ∇ • ρ⋅ =

∂
 (15) 

the momentum equations: 
 x direction: 

 

x

2

M

u u u v u w
t x y z

p u u v u w2 S
x x x y y x z z x

( ) ( ) ( ) ( )∂ ρ ⋅ ∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + μ ⋅ + μ ⋅ + + μ ⋅ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (16) 

 y direction: 

 

y

2

M

v u v v v w
t x y z

p v u v v w2 S
y x x y y y z z y

( ) ( ) ( ) ( )∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ∂ ρ ⋅ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + μ ⋅ + + μ ⋅ + μ ⋅ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (17) 

 z direction: 

 

z

2

M

( w) ( u w) ( v w) ( w )
t x y z

p w u w v wμ μ 2μ S
z x x z y y z z z

∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + ⋅ + + ⋅ + + ⋅ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (18) 
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 or, in general vector form: 

 ( )T
M

U U U p U U S
t

( ) ( ) ( )∂ ρ ⋅ ⎡ ⎤+ ∇ • ρ ⋅ ⊗ = ∇ • − ⋅ δ + μ ⋅ ∇ ⊗ + ∇ ⊗ +⎢ ⎥⎣ ⎦∂
 (19) 

the conservation of mass of phase α: 

 
r

r U 0
t

( ) ( )α α
α α

∂ ⋅ ρ
+ ∇ • ⋅ ρ ⋅ =

∂
 (20) 

and the constraint that the two phases completely fill up the available volume: 

 r r 1α β+ =  (21) 

 Therefore, the flow is characterized by 6 equations (5 of them partial differential 
equations) and 6 unknowns (p, u, v, w, rα and rβ). 

In these equations, ρ and µ are the volume fraction weighted mixture density and 
viscosity evaluated as [83]: 

 r rα α β βρ = ρ ⋅ + ρ ⋅  (22) 

 r rα α β βμ = μ ⋅ + μ ⋅  (23) 

SM represents the source of momentum due to internal forces, the gravity in this case, and 
is given by [83]: 

 ( )M refS g= ρ − ρ ⋅  (24) 

where ρref is the reference density. 

2.1.2 Numerical model 

CFX is based on the Finite Volume Method (FVM), and each node in the mesh is at the 
centre of a finite control volume, Fig. 3. 
 The partial differential equations are integrated over all the control volumes, using 
Gauss’ Divergence Theorem to convert volume integrals on to surface integrals: 

 
V S

dV n dS∇ ⋅ φ = ⋅ φ∫ ∫  (25) 

where n  represents the outward normal surface vector. 
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Fig. 3: Representation of the control volume associated with each mesh node. 

As the control volume surface is composed by a series of surface segments, or 
faces, the surface integrals can be transformed into a sum of integrals over the faces [84]: 

 
fS f

n dS n dS
⎛ ⎞
⎜ ⎟⋅ φ = ⋅ φ
⎜ ⎟
⎝ ⎠

∑∫ ∫  (26) 

These face integrals are then discretely represented at integration points, located at the 
centre of each face: 

 ( )ip ip ip
f ipf

n dS n A
⎛ ⎞
⎜ ⎟⋅ φ ≈ ⋅ ⋅ φ
⎜ ⎟
⎝ ⎠

∑ ∑∫  (27) 

Aip being the area of the face associated with the integration point. 
According to this, the discrete forms of the governing equations are [83]: 

the equation of conservation of total mass: 

 ( )ipipV
dV U n A 0

t

⎛ ⎞∂ ⎜ ⎟ρ + ρ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (28) 

the momentum equations: 
 x direction: 

 

( )

x

ip ip x ip
ip ipV

x y z M
ip ip

u dV m u n A p
t

u u v u w2 n n n A S V
x y x z x

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ ⋅ ⋅ + + ⋅ + + ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (29) 
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 y direction: 

 

( )

y

ip ip y ipip ipV

x y z M
ip ip

vdV m v n A p
t

v u v v wn 2 n n A S V
x y y z y

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ + ⋅ + ⋅ ⋅ + + ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (30) 

 z direction: 

 

( )

z

ip ip z ip
ip ipV

x y z M
ip ip

w dV m w n A p
t

w u w v wn n 2 n A S V
x z y z z

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ + ⋅ + + ⋅ + ⋅ ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (31) 

and the mass conservation equation of phase α [85]: 

 ( )ipipV
r dV r U n A 0

t α α α α

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (32) 

ipm  being the discrete mass flow rate through a face of the finite volume, obtained from 
the preceding iteration as [86]: 

 ( )ip ip
m U n A= ρ⋅ • ⋅  (33) 

nx, ny and nz are the Cartesian components of the outward normal surface vector, and V the 
volume of the control volume. 

Choosing the second order backward Euler scheme, the transient term on the 
equation of conservation of total mass (28) is approximated as [87]: 

 
( ) ( ) ( )2 0 00

V

V 1dV 2 1
t t 1

⎛ ⎞ ⎧ ⎫∂ ⎪ ⎪⎡ ⎤⎜ ⎟ρ ≈ ⋅ ⋅ + θ ⋅ θ ⋅ ρ − + θ ⋅ ρ + ρ⎨ ⎬⎢ ⎥⎣ ⎦⎜ ⎟∂ Δ θ ⋅ + θ⎪ ⎪⎩ ⎭⎝ ⎠
∫  (34) 

and, on the momentum equations (29), (30) and (31) as: 

 

( ) ( ) ( )

i
V

2 0 0 00 00
i i i

U dV
t

V 1 2 U 1 U U
t 1

⎛ ⎞∂ ⎜ ⎟ρ ⋅ ≈
⎜ ⎟∂ ⎝ ⎠

⎧ ⎫⎪ ⎪⎡ ⎤⋅ ⋅ + θ ⋅ θ ⋅ρ ⋅ − + θ ⋅ρ ⋅ + ρ ⋅⎨ ⎬⎢ ⎥⎣ ⎦Δ θ ⋅ + θ⎪ ⎪⎩ ⎭

∫
 (35) 
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where Ui represents the i component of the velocity vector, 0 denotes the old time 
level, 00 the time before the old time level, and θ is the quotient between the old and the 
new time step: 

 
0 0 00

0
t t t
t t t

Δ −
θ = =

Δ −
 (36) 

At this point, the values of the variables and of the derivatives at the integration 
points must be obtained from the values of the variables stored at the mesh nodes. The 
value of the pressure p at ip is evaluated using finite element shape functions (linear in 
terms of parametric coordinates) [83]: 

 ( )ip n nip
n

p N p⎡ ⎤= ⋅⎢ ⎥⎣ ⎦∑  (37) 

where Nn is the shape function for node n, and pn the value of p at the node n. For the 
diffusion terms, the derivatives at the integration points are also evaluated making use of 
shape functions. For example, the derivative of φ in the x direction at ip is obtained as [83]: 

 n
n

ip ipn

N
x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂∂φ ⎢ ⎥= ⋅ φ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (38) 

On the advection terms, a variable φ at the integration points is obtained as: 

 ( )ip up Rφ = φ + β ⋅ ∇φ •  (39) 

where φup is the value of φ at the upwind node, φ∇  is the upwind gradient of φ, R  is the 

position vector from the upwind node to ip, and β is a blend factor. Different values of β 
produce different advection schemes. If β = 0 the scheme is a first order Upwind 
Differencing Scheme (UDS), if β = 1, the scheme is a Second Order Upwind (SOU) biased 
scheme. Here, the advection scheme chosen for the total mass and momentum equations is 
based on that of [88], the high resolution scheme, where β is variable and locally computed 
to be as close as possible to 1 without violating boundedness principles. 

However, for free surface applications, this scheme still causes too much numerical 
diffusion to the volume fraction equation. Instead, in order to keep the interface sharp, and 
as the order of accuracy is not the most important when the solutions are inherently 
discontinuous, when the “free surface flow” option is selected, CFX uses a compressive 
differencing scheme for the advection term of the volume fraction equation. This is made 
allowing β > 1, but reducing it as much as necessary to still maintain boundedness [85]. A 
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compressive transient scheme is also used for the transient term in the volume fraction 
equation. 

2.1.3 Case study 

A simple test case, the filling of a space between two parallel plates with a resin with 
constant density and viscosity, as shown in Fig. 4, was simulated. The width of the plates is 
considered to be infinite, so a two-dimensional approach is performed.  

 
Fig. 4: Geometry of the simulated test case. 

As CFX does not have a 2D solver, a three-dimensional simulation, with an 
one-element-thick mesh and symmetry boundary conditions imposed on the “front” and 
“back” faces, has to be performed. This applies whenever a two-dimensional simulation is 
mentioned in this work. 

The properties of the filling fluid were chosen to be similar to those of the common 
RIM resins: density 1000 kg/m3 and viscosity 0.05 kg/(m⋅s). The space between the plates 
is initially filled with air, whose density and viscosity, taken as constant, are 1.185 kg/m3 
and 1.831×10-5 kg/m⋅s, respectively. 

The imposed boundary conditions are: a parabolic velocity profile with an average 
velocity of 0.1037 m/s at the inlet, pressure equal to zero at the outlet, and the condition of 
no slip on the walls. The values for the inlet average velocity and for the thickness H were 
chosen to be the same used for the mould modelled in Section 4.2.  

The Reynolds number may be obtained as: 

 hU DRe ρ ⋅ ⋅
=

μ
 (40) 

where Dh is the hydraulic diameter defined as [89]: 
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 h
4 AD

P
⋅

=  (41) 

which, for a rectangular cross section with infinite width W, takes the value: 

 
W

h h
4 W HD D 2 H

2 W H → ∞

⋅ ⋅
= = ⋅

⋅ +
,

( )
 (42) 

Thus, the Reynolds number is approximately 13 for the resin and 43 for the air. The 
flow is therefore unquestionably laminar, and the parabolic velocity profile imposed at the 
inlet boundary makes sense as a fully developed laminar flow. The velocity profile of the 
air at the outlet boundary is also expected to be parabolic. 

Considering the control volume surrounded by the dashed line represented in 
Fig. 5: 

 
Fig. 5: Representation of the control volume and forces. 

and applying the Newton’s Second Law of motion in the x direction and an integral 
balance, one obtains [89]: 

 ( ) ( )x
cv cs

d dF m u u dV u U n dA
dt dt

⎛ ⎞
⎜ ⎟= ⋅ = ⋅ ρ + ⋅ ρ ⋅ •
⎜ ⎟
⎝ ⎠

∑ ∫∫∫ ∫∫  (43) 

where cv designates the control volume and cs its surface. 
Being the velocity on the walls zero, and assuming that the velocity profile at the 

outlet is parabolic due to the flow being laminar, as at the inlet, the second term on the 
right side of equation (43) reduces to: 

 
( )

( )

2 2

cs outlet inlet
2

resin air

u U n dA u dA u dA

6 U H W
5

⋅ ρ ⋅ • = ρ ⋅ − ρ ⋅

= − ⋅ ⋅ ⋅ ⋅ ρ − ρ

∫∫ ∫∫ ∫∫
 (44) 

where W indicates the width of the control volume. 
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Assuming a flat flow front, the density is constant on each cross section. Thus, the 
first term on the right side of equation (43) may be rewritten as: 

 
L

cv 0 S

d du dV u dA dx
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ρ = ρ ⋅

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫∫ ∫ ∫∫  (45) 

where S indicates a cross section. But, because of conservation of mass, and as the fluids 
are considered incompressible, the volume flow rate is constant: 

 in in
S

u dA U A U H W constant( )= ⋅ = ⋅ ⋅∫∫  (46) 

Then, equation (45) may be simplified as: 

 ( ){ }resin air
cv

d du dV H W U Lf L Lf
dt dt

⎛ ⎞
⎜ ⎟ ⎡ ⎤⋅ ρ = ⋅ ⋅ ⋅ ⋅ ρ + − ⋅ ρ⎣ ⎦⎜ ⎟
⎝ ⎠
∫∫∫  (47) 

As the plates are parallel and therefore the cross section area is constant, the 
position of the flow front, Lf, may be obtained by integrating the inlet velocity over the 
time: 

 
t

0
Lf U dt= ∫  (48) 

leading finally to: 

 
( )

( )}
resin air air

cv
2

resin air

d dUu dV H W Lf L
dt dt

U

⎛ ⎞ ⎧⎪⎜ ⎟ ⎡ ⎤⋅ρ = ⋅ ⋅ ⋅ ⋅ ρ − ρ + ⋅ρ⎨ ⎣ ⎦⎜ ⎟ ⎪⎩⎝ ⎠

+ ⋅ ρ − ρ

∫∫∫
 (49) 

If the inlet velocity is constant, the derivative on the right side of the above equation is 
zero, and the sum of forces is therefore: 

 ( )2
x in in out out resin air

0

1F P A P A Fg Fw U H W
5

=

= ⋅ − ⋅ − − = − ⋅ ⋅ ⋅ ⋅ ρ − ρ∑  (50) 

The gravity force, Fg, is achieved by integrating (ρ⋅g) over the control volume, 
which considering again that the density is constant on each cross section, and that the 
cross section area is constant and equal to H⋅W, leads to: 
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 ( )
L

resin air air
cv 0

Fg g dV g H W dx g H W Lf L⎡ ⎤= ρ ⋅ = ⋅ ⋅ ⋅ ρ = ⋅ ⋅ ⋅ ⋅ ρ − ρ + ⋅ρ⎣ ⎦∫∫∫ ∫  (51) 

The wall shear stress is obtained, for Newtonian fluids, as: 

 w
wall

du
dy @

⎡ ⎤
τ = μ ⋅⎢ ⎥

⎣ ⎦
 (52) 

which, for a laminar flow with parabolic velocity profile may be reworked as: 

 w
6 U

H
⋅ μ ⋅

τ =  (53) 

and the walls shear force, Fw, is obtained by integrating τw over the walls: 

 

( )

L L

w 2
walls 0 0

resin air air2

6 U 12 U H WFw dA 2 W dx dx
H H

12 U H W Lf L
H

⋅ μ ⋅ ⋅ ⋅ ⋅
= τ = × ⋅ = ⋅ μ

⋅ ⋅ ⋅ ⎡ ⎤= ⋅ ⋅ μ − μ + ⋅μ⎣ ⎦

∫∫ ∫ ∫
 (54) 

Note that, due to the fountain flow, the velocity profile at the flow front region is 
not parabolic, and therefore there is an error on the above expression for Fw. However, as 
the flow front region is small compared with the total length L, this error may be neglected. 

Finally, inserting the expressions of equations (51) and (54) into equation (50), the 
inlet pressure, Pin, is obtained as: 

 
( )

( ) ( )

in resin air air

2
resin air air resin air2

P g Lf L

12 U 1Lf L U
5H

⎡ ⎤= ⋅ ⋅ ρ − ρ + ⋅ ρ⎣ ⎦

⋅ ⎡ ⎤+ ⋅ ⋅ μ − μ + ⋅ μ − ⋅ ⋅ ρ − ρ⎣ ⎦
 (55) 

On this last equation, the density and viscosity of the air could be fairly neglected, as they 
are considerably smaller than those of the resin: ρair/ρresin ≅ 0.12% and μair/μresin ≅ 0.04%.  

 
2

in resin resin resin2
12 U 1P g Lf Lf U

5H
⋅

≅ ⋅ ⋅ρ + ⋅ ⋅μ − ⋅ ⋅ρ  (56) 

The errors caused by this simplification would be, for Lf = 0.1L, 1 % on the first term of 
the right side of the equation, 0.3 % on the second term and 0.12 % on the last term. For 
Lf = 0.5L, the errors would be 0.12 %, 0.04 % and 0.12 %, respectively. 

On the CFX model, the buoyancy reference density, ρref, was set to the air density. 
This is interpreted as a momentum source on equation (19) equal to: 
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 M ref airS g g( ) ( )= ⋅ ρ − ρ = ⋅ ρ − ρ  (57) 

which means that the air hydrostatic pressure effect is omitted. Consequently, to obtain the 
inlet pressure according to the CFX homogeneous model, Pin

hom, the term L⋅ρair shall be 
withdrawn from the first term of the right side of equation (55): 

 
( )

( ) ( )

hom
in resin air

2
resin air air resin air2

P g Lf

12 U 1Lf L U
5H

= ⋅ ⋅ ρ − ρ

⋅ ⎡ ⎤+ ⋅ ⋅ μ − μ + ⋅μ − ⋅ ⋅ ρ − ρ⎣ ⎦
 (58) 

This causes an error of 1.2 % on the first term of the right side of this last equation, for 
Lf = 0.1L, and 0.24 % for Lf = 0.5L. The last term on equations (55) and (58) corresponds 
only to 2.1 Pa. 

To calculate the value of the pressure at each position x, the velocity profile is 
considered to be parabolic at each cross section, which is valid for the whole domain 
except at the vicinity of the flow front. The same previous analysis is performed, except 
that this time the control volume is considered to comprise only the region between a cross 
section at the position x and the outlet. Thus the pressure depends on x as: 

 

( ) ( )

( ) ( )

( )

( ) ( )

resin air

resin air2

2
resin air

air air2

g Lf x L Lf

12 U Lf x L Lf for x Lf
H

1P x U
5

12 Ug L x L x for x Lf
H

( )

( )

( )

⎧ ⎡ ⎤⋅ − ⋅ρ + − ⋅ρ⎣ ⎦⎪
⎪ ⋅ ⎡ ⎤+ ⋅ − ⋅ μ + − ⋅μ <⎪ ⎣ ⎦
⎪
⎪

= − ⋅ ⋅ ρ − ρ⎨
⎪
⎪
⎪

⋅⎪ ⋅ − ⋅ρ + ⋅ − ⋅μ >⎪
⎩

 (59) 

and the pressure according to the CFX homogeneous model as: 

 

( ) ( )

( ) ( )

( )

( )

resin air

resin air2

2hom
resin air

air2

g Lf x

12 U Lf x L Lf for x Lf
H

1P x U
5

12 U L x for x Lf
H

( )

( )

( )

⎧ ⋅ − ⋅ ρ − ρ
⎪

⋅⎪ ⎡ ⎤+ ⋅ − ⋅μ + − ⋅μ <⎣ ⎦⎪
⎪
⎪= − ⋅ ⋅ ρ − ρ⎨
⎪
⎪
⎪

⋅⎪ ⋅ − ⋅μ >⎪
⎩

 (60) 
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On these two last equations there is a discontinuity at x = Lf. This is due to the 
assumptions of a flat flow front and of a parabolic velocity profile at every cross section, 
which is not true at the flow front region. However, this discontinuity represents only 
2.1 Pa. 

The derivative of the pressure along x is then: 

 

resin
resin 2

air
air 2

12 U
g for x Lf

H
dP x

dx
12 U

g for x Lf
H

( )

( )

( )

⎧ ⎛ ⎞⋅ ⋅μ
− ⋅ρ + <⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎪= ⎨
⎪ ⎛ ⎞⋅ ⋅μ⎪ − ⋅ρ + >⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

 (61) 

and: 

 

( ) resin
resin air 2

hom

air
2

12 U
g for x Lf

H
dP x

dx
12 U

for x Lf
H

( )

( )

( )

⎧ ⎡ ⎤⋅ ⋅μ
− ⋅ ρ − ρ + <⎪ ⎢ ⎥

⎢ ⎥⎪ ⎣ ⎦
⎪= ⎨
⎪ ⋅ ⋅μ⎪ − >
⎪
⎩

 (62) 

Due to symmetry, only half of the geometry was modelled. The simulations were 
performed with four different meshes: mesh1 with 24 elements on the longitudinal 
direction by 5 on the transversal direction, mesh2 with 48 by 5 elements, mesh3 with 
24 by 20 elements, and mesh4 with 48 by 20 elements. 

The position of the resin-air interface after 0.35 s is represented in Fig. 6a-6d. The 
three contour lines denote the resin volume fractions of 0.9, 0.5 and 0.1. The vertical line 
indicates the theoretical position of the flow front, obtained with equation (48), which for 
t = 0.35 s results in Lf = 36.3 mm. 
 It is noticeable that, for the four meshes, the interface is captured within two mesh 
elements, proving the efficiency of the compressive discretization schemes. Increasing the 
number of elements on the longitudinal direction improves its definition in that direction, 
but does not change its position. By increasing the number of elements on the transverse 
direction, the interface position gets closer to its theoretical position, though it is always 
ahead. 
 However, the most important conclusion from these simulations is that the interface 
does not touch the walls, there existing a layer of air between the resin and the walls. This 
is clearly not in accordance with reality. The volume of resin which is ahead of the 
theoretical position of the flow front (the vertical line) shall correspond to the volume of 
resin lacking near the walls. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6: Position of the resin-air interface for t = 0.35 s. Contour lines denote the resin 
volume fractions 0.9, 0.5 and 0.1. (a) mesh1: 24×5 elements; (b) mesh2: 48×5 elements; 

 (c) mesh3: 24×20 elements; (d) mesh4: 48×20 elements. 
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In Fig. 7a-7d, the value of the resin volume fraction along the transverse direction, 
at midway between the inlet and the theoretical position of the flow front, is represented. 
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(d)  

Fig. 7: Resin volume fraction along the transverse direction, at x = ½ Lf, for t = 0.35 s. 
(a) mesh1, average volume fraction = 0.925; (b) mesh2, average volume fraction = 0.928; 
(c) mesh3, average volume fraction = 0.960; (d) mesh4, average volume fraction = 0.962. 

From this last figure, one concludes that increasing the number of mesh elements on the 
longitudinal direction does not change this behaviour, while increasing the number of 
elements on the transverse direction causes the average volume fraction to increase but the 
volume fraction on the wall nodes to decrease.  
 The viscosity is obtained as the volume fraction weighted phases’ viscosities by 
equation (23). Because the resin volume fraction on the walls is close to zero, the 
computed viscosity on the walls nodes will be much smaller than its actual value, resulting 
in a higher velocity gradient on the transverse direction next to the walls and consequently 
a wrong velocity profile. When solving the cure and energy equations, this will cause an 
error on the advection terms of those equations, which will possibly lead to completely 
wrong final results. 
 Also due to the lower computed values of the viscosity on the walls nodes, the wall 
shear stress, which is obtained by equation (52), will be lower than its real value, leading to 
a lower value of the viscous effect contribution to pressure. This is of major importance, as 
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injection pressure is one of the most important parameters to be predicted by numerical 
simulation. 
 Comparing, for t = 0.35 s, the inlet pressure obtained from CFX with mesh1 (the 
coarsest mesh), 536 Pa, and the theoretical pressure obtained with equations (58) or (60), 
574 Pa, the pressure obtained with CFX is just 6.5% lower. However, the error caused by 
the lower shear stress on the walls is masked by an increase of the gravity effect in 
pressure due to the fact that the flow front is ahead of its theoretical position. 
 The pressure due to the gravity effect may be evaluated from the hydrostatic law 
as [89]: 

 dP grav g
dx
( )

= −ρ ⋅  (63) 

 or: 

 ( )
hom

air
dP grav g

dx
( )

= − ρ − ρ ⋅  (64) 

which, considering the pressure at the outlet as zero, leads to: 

 
L

x
P grav g dx( ) = ρ ⋅∫  (65) 

or: 

 ( )
L

hom
air

x
P grav g dx( ) = ρ − ρ ⋅∫  (66) 

 The pressure due to the viscous effect may be regarded as the difference between 
the whole pressure and the pressure due to the gravity effect: P-P(grav), or Phom-Phom(grav). 
This is not completely true, as there is also a small contribution from the rate of change of 
linear momentum, 2.1 Pa, and thereby it is not designated here by P(visc). 
 Thus, the comparison will be done between Phom-Phom(grav), which is obtained as: 

 

( ) ( )

( )

( )

resin air2

2hom
resin air

hom

air2

12 U Lf x L Lf
H
1P x U
5

P grav x

12 U L x
H

⎧ ⋅ ⎡ ⎤⋅ − ⋅μ + − ⋅μ⎪ ⎣ ⎦
⎪
⎪⎛ ⎞− − ⋅ ⋅ ρ − ρ⎪⎜ ⎟ = ⎨⎜ ⎟ ⎪⎝ ⎠
⎪
⎪ ⋅

⋅ − ⋅μ⎪
⎩

( )

( )( )

for x Lf

for x Lf

<

>

( )

( )

 (67) 
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and the pressure obtained from CFX, PCFX, minus its gravity contribution: 

 ( )
L

CFX CFX CFX
air

x CFX

P P grav P g dx( )
⎛ ⎞
⎜ ⎟− = − ρ − ρ ⋅
⎜ ⎟
⎝ ⎠
∫  (68) 

In this equation, the integration is done along the centre line where the flow front has its 
most advanced position. 
 The comparison between the results obtained from the simulations and the 
theoretical ones are represented in Fig. 8a-8d. The four graphics, obtained with the four 
different meshes, are quite similar. 
 The derivative of (PCFX-PCFX(grav)) is compared with theoretical values in 
Fig. 9a-9d. It is possible to observe the error induced in (PCFX-PCFX(grav)). The derivative 
should be constant for each phase, from equation (67) it should take the value -6076 Pa/m 
for the resin and -2.2 Pa/m for the air. Instead, a nearly ramp function is observed. 

In Table 1, the results obtained at the inlet are presented and compared with the 
theoretical ones. It is interesting to notice that when increasing, the number of mesh 
elements on the transverse direction by a factor of 4, from mesh1 to mesh3 and from 
mesh2 to mesh4, the error of the obtained pressure, PCFX, which is always negative, 
increases, in absolute value, from 6.7 % to 9.0 % and from 6.3 % to 8.5 %, respectively. At 
a first glance this might look somehow unexpected, but the reason is that the error of the 
gravity contribution to pressure, PCFX(grav), which is always positive, decreased from 
10.9 % to 5.4 % and from 10.3 % to 5.0 %, respectively. This was already observed in 
Fig. 6a-6d, the interface positions obtained with mesh3 and mesh4, though always ahead, 
are closer to the theoretical position than the obtained with mesh1 and mesh2. 

Table 1: Comparison between the theoretical pressures and the pressures obtained from the 
simulations, at x = 0 (inlet), at t = 0.35 s. The errors relative to the theoretical values are 

presented inside brackets. 

 Phom Phom(grav) Phom-Phom(grav) 

Theory 573.7 355.3 218.4 
   
 PCFX PCFX(grav) PCFX-PCFX(grav) 

535.2 394.0 141.1 mesh1: 
24×5 elem. (-6.7 %) (+10.9 %) (-35.4 %) 

537.3 391.7 145.7 mesh2: 
48×5 elem. (-6.3 %) (+10.3 %) (-33.3 %) 

522.1 374.3 147.8 mesh3: 
24×20 elem. (-9.0 %) (+5.4 %) (-32.4 %) 

524.9 372.9 152.0 mesh4: 
48×20 elem. (-8.5 %) (+5.0 %) (-30.4 %) 
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Fig. 8: Comparison between the pressures obtained from simulations and theoretical 
values, for t = 0.35 s. (a) mesh1; (b) mesh2; (c) mesh3; (d) mesh 4. 
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Fig. 9: Comparison between the derivative of (PCFX-PCFX(grav)) and theoretical 
values, for t = 0.35 s. (a) mesh1; (b) mesh2; (c) mesh3; (d) mesh 4. 
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The error of (PCFX-PCFX(grav)), in absolute value, shows only a tiny decrease when 
increasing the number of mesh elements. Mesh4 has 8 times the number of mesh elements 
of mesh1, and the error only decreased from 35.4 % to 30.4 %. Thus, it seems that 
increasing the number of mesh elements, at least within reasonable limits, is not the cure 
for the problem. 

The computing time, for each mesh, to complete 0.47 s of simulation is shown in 
Fig. 10. CFX was running in double precision, in a workstation PC with a Pentium®4 
2.5 MHz processor and 512 MB RAM memory, using Windows® 2000 operating system. 
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Fig. 10: Computing time for the simulations to complete 0.47 s. 

 This unwanted behaviour has although been mentioned by some authors, who claim 
that that in filling simulations the no-slip condition on mould walls should be imposed only 
on the filled portion of the mould, as a no-slip boundary condition in the air will prevent 
the flow front from touching the walls [14, 56]. 

2.2 The inhomogeneous model 

2.2.1 Physical model 

Despite the physical model described in the previous sub-section being theoretically 
correct, it is unable to produce satisfactory results with the also physically correct no-slip 
boundary condition on the walls.  

CFX does not allow the implementation of conditional boundary conditions: it is 
not possible to define a wall boundary condition as no-slip if the volume fraction of the 
liquid phase is above a certain value, 0.5 for instance, and as free-slip if it is below. 
Therefore, the only way to prescribe a no-slip boundary condition on the filled portion of 
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the mould and a free-slip boundary condition in the empty portion is by using the CFX’s 
inhomogeneous multiphase flow model. In the inhomogeneous model, each phase has its 
own flow field and they interact via interphase transfer terms [83]. According to the 
assumption made by this model, the flow is described by: 
the equations of conservation of mass of each phase: 

 
r

r U 0
t

( ) ( )α α
α α α

∂ ⋅ ρ
+ ∇ • ⋅ ρ ⋅ =

∂
 (69) 

 
r

r U 0
t

( )
( )β β

β β β
∂ ⋅ρ

+ ∇ • ⋅ρ ⋅ =
∂

 (70) 

the momentum equations for phase α: 
 x direction: 

 

x x

2

M

r u r u r u v r u w
t x y z

u u vpr 2 r r
x x x y y x

u w
r S M

z z x

( ) ( ) ( ) ( )α α α α α α α α α α α α α α

α α α
α α α α α

α α
α α α αβ

∂ ⋅ ρ ⋅ ∂ ⋅ ρ ⋅ ∂ ⋅ ρ ⋅ ⋅ ∂ ⋅ ρ ⋅ ⋅
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∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
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⎡ ⎤∂ ∂⎛ ⎞∂
⋅ μ ⋅ + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (71) 

 y direction: 
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v w
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z z y
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 z direction: 
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 or, in general vector form: 

 

( )T
M

r U
r U U

t

r p r U U S M

( )
( )

( )

α α α
α α α α

α α α α α α αβ

∂ ⋅ ρ ⋅
+ ∇ • ⋅ ρ ⋅ ⊗ =

∂

⎡ ⎤− ⋅ ∇ + ∇ • ⋅ μ ⋅ ∇ ⊗ + ∇ ⊗ + +⎢ ⎥⎣ ⎦

 (74) 

the momentum equations for phase β, for which just the vector form is presented: 

 

( )T
M

r U
r U U

t

r p r U U S M

( )
( )

( )

β β β
β β β β

β β β β β β βα

∂ ⋅ ρ ⋅
+ ∇ • ⋅ ρ ⋅ ⊗ =

∂

⎡ ⎤− ⋅ ∇ + ∇ • ⋅ μ ⋅ ∇ ⊗ + ∇ ⊗ + +⎢ ⎥⎣ ⎦

 (75) 

and the constraint that the volume fractions sum to unity: 

 r r 1α β+ =  (76) 

By assuming a different velocity field for each phase, the flow is characterized by 
9 equations (8 of them partial differential equations) and 9 unknowns (p, uα, vα, wα, uβ, vβ, 
wβ, rα and rβ). 

As in the homogeneous model, SM represents the source of momentum due to the 
gravity force, and is given, for phase α and β, respectively, by: 

 ( )M refS r gα α α= ⋅ ρ − ρ ⋅  (77) 

 ( )M refS r gβ β β= ⋅ ρ − ρ ⋅  (78) 

Mαβ and Mβα are interphase momentum transfer terms, and they represent, respectively, the 
force per unit volume exerted by phase β on phase α, and by phase α on phase β. These 
interfacial forces are equal in absolute value and opposite in direction [83]: 

 M Mαβ βα= −  (79) 

As both phases, resin and air, are continuous, there is not any implemented model in CFX 
for Mαβ. It is simply defined as [83, 90]: 

 ( )DM C A U U U Uαβ αβ αβ β α β α= ⋅ρ ⋅ ⋅ − ⋅ −  (80) 

where CD is a non-dimensional drag coefficient, ραβ is the mixture density given by: 

 r rαβ α α β βρ = ρ ⋅ + ρ ⋅  (81) 

and Aαβ is the interfacial area per unit volume, given by: 
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r r

A
d
α β

αβ
αβ

⋅
=  (82) 

where dαβ is a user-specified interface length scale. 
CFX requires the definition of CD and dαβ. However, substituting the expressions of 

equations (81) and (82) into equation (80), leads to: 

 ( ) ( )DCM r r r r U U U U
dαβ α β α α β β β α β α

αβ
= ⋅ ⋅ ⋅ ρ ⋅ + ρ ⋅ ⋅ − ⋅ −  (83) 

from which one concludes that what matters is the quotient CD/dαβ and not their individual 
values. This was checked by setting in CFX different values of CD and dαβ but keeping 
their quotient constant, and exactly the same results were obtained. 

It is interesting to notice that as the volume fraction of one of the phases 
approximates zero, the term Mαβ vanishes. Therefore, as one would expect, Mαβ is only 
meaningful at the interface. 

2.2.2 Numerical model 

The discretization of the governing equations is done in the same way as for the 
homogeneous model. The discrete forms of the equations are therefore [91]: 
the equations of conservation of mass of each phase: 

 ( )ipipV
r dV r U n A 0

t α α α α α

⎛ ⎞∂ ⎜ ⎟⋅ ρ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (84) 

 ( )ipipV
r dV r U n A 0

t β β β β β

⎛ ⎞∂ ⎜ ⎟⋅ ρ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (85) 

the momentum equations for phase α: 
 in x direction: 

 

( )ip ip ip

x x

x ip
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⎜ ⎟∂ ⎝ ⎠
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⋅ + ⋅
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∑  (86) 
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 in y direction: 
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 in z direction: 
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where 
ip

mα  is the discrete mass flow of phase α through a face of the finite volume, 

obtained from the previous iteration as: 

 ( )ip ip
m r U n Aα α α α= ⋅ρ ⋅ • ⋅  (89) 

The three momentum equations for phase β are analogous to the three momentum 
equations for phase α presented above. 

As the second order backward Euler scheme is used, the transient term on the 
momentum equations (86) to (88) is approximated as: 

 ( )

( ) ( ) }
i

i i i

V

2 0 0 0 00 00 00

V 1r U dV
t t 1

2 r U 1 r U r U

α α α

α α α α α α α α α

⎛ ⎞ ⎧∂ ⎪⎜ ⎟⋅ρ ⋅ ≈ ⋅ ⋅⎨⎜ ⎟∂ Δ θ ⋅ + θ⎪⎩⎝ ⎠

⎡ ⎤+ θ ⋅ θ ⋅ ⋅ρ ⋅ − + θ ⋅ ⋅ρ ⋅ + ⋅ρ ⋅⎢ ⎥⎣ ⎦

∫
 (90) 

where θ is the quotient between the old and the new time step, as already defined in 
equation (36). The values of the variables and of the derivatives at the integration points 
are obtained according to what was previously stated for the homogeneous model. 
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2.2.3 Case study 

The case under study is the same one used for the homogeneous model: the filling of a 
space between two parallel plates with a resin, as represented in Fig. 4. However, now the 
no-slip condition on the walls is only applied to the equations referring to the resin phase, 
while the free-slip condition is applied to the equations referring to the air phase. 

Consequently, as the wall shear stress is zero for the air phase and, due to this, the 
velocity profile of the air at the outlet is expected to be flat, the theoretical pressure defined 
with these boundary conditions, Pinhom, is slightly different than the one defined with the 
boundary conditions used in the homogeneous model, Phom. 

For these boundary conditions: 

 ( ) 2
resin air

cs

6u U n dA U H W
5

⎛ ⎞⋅ρ ⋅ • = − ⋅ ⋅ ⋅ ⋅ ρ − ρ⎜ ⎟
⎝ ⎠∫∫  (91) 

and: 
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12 U H W Lf6 UFw dA 2 W dx
H H

⋅ ⋅ ⋅ ⋅ μ ⋅⋅μ ⋅
= τ = × ⋅ =∫∫ ∫  (92) 

Therefore, Pinhom(x) is given by: 
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 (93) 

 As in the analysis done for the homogeneous model, the gravity effect in pressure 
may be obtained from: 

 ( )
L

inhom
air

x
P grav x g dx= ρ − ρ ⋅∫( )( )  (94) 

and the pressure due to the viscous effect as: 

 

( ) 2resin
resin2inhom

inhom

12 U 1Lf x U for x Lf
5HP x

P grav x

0 for x Lf

⎧ ⋅ ⋅μ
⋅ − − ⋅ ⋅ρ <⎪

⎪⎛ ⎞− ⎪⎜ ⎟ = ⎨⎜ ⎟ ⎪⎝ ⎠
⎪
⎪ >⎩

( )
( )

( )( )

( )

 (95) 
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As mentioned before, CFX requires the definition of the parameters CD and dαβ to 
evaluate Mαβ. But, because of the fact already stated, that what matters is their quotient 
(CD/dαβ) and not their individual values, dαβ was kept constant with the default CFX value 
(1×10-3 m), and CD was varied between 0.05 and 500. 

The simulations were performed with mesh2 (48 by 5 elements) used for the 
homogeneous model. The time step is 2×10-4 s, the residuals convergence target which 
shall be achieved by all equations, except the volume fraction equations, is 10-5, up to a 
maximum of 50 iterations within each time step. CFX automatically sets the convergence 
criterion for the volume fraction equations, as these are usually more difficult to converge, 
to 10 times the specified convergence target [83, 92, 93]. 

The positions of the resin-air interface, for t = 0.35 s, obtained with CD set to 0.05, 
0.5, 5 and 50, are represented in Fig. 11a-11d. 
 The results obtained with CD set to 0.05, 0.5 and 5 are very similar. Unlike in the 
homogeneous model simulations, now the interface touches the walls and, clearly upstream 
of the interface there is resin and downstream of it there is air. Considering the interface 
position the location where the volume fraction is 0.5, it is in very good agreement with its 
theoretical position. 
 Although, when CD is increased to 50, Fig. 11d, the behaviour becomes similar to 
that of the homogeneous model. The reason for this is that when Mαβ increases, the phases’ 
flow fields tend to equalize each other. Actually, the homogeneous model may be regarded 
as a special case of the inhomogeneous model for a very large value of Mαβ. 
 For these simulations, the comparison between the pressures obtained from 
simulation and the theoretical ones is shown in Fig. 12a-12d. As expected, because of the 
results shown in Fig. 11a-11d, the graphics of Fig. 12a-12c are similar and the results 
obtained from simulations nearly match the theoretical ones. As also expected, for 
CD = 50, Fig. 12d, the pressure values obtained from simulation become similar to those 
obtained with the homogeneous model. 
 The comparison between the derivative along x of (Pinhom(x)-Pinhom(grav)(x)) and 
(PCFX-PCFX(grav)) is shown in Fig. 13a-13d. On the first three graphics, the results from 
simulations match the theoretical values for the majority of the domain, except for the flow 
front region. However for the two smallest values of CD, the error on this region is greater 
than for CD = 5. For CD = 50, the graphic is again similar to the homogeneous model 
results. 
 In Table 2, the results and the errors relative to theoretical values, at the inlet, for 
each value of CD are presented. Comparing these results with the ones presented in 
Table 1, obtained with the homogeneous model, one concludes that, for CD equal to 0.05, 
0.5 and 5, the errors were considerably reduced. For the same mesh, mesh2, the whole  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11: Position of the resin-air interface for t = 0.35 s, obtained using mesh2. Contour lines 
denote the resin volume fractions 0.9, 0.5 and 0.1. The vertical line represents the theoretical 

position of the flow front. (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 
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Fig. 12: Comparison between the pressures obtained from simulations, with mesh2, and 
theoretical values, for t = 0.35 s. (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 


















































































































































