# Calculation on non-orthogonal curvelinear structured grids, finite-volume method

(Difference between revisions)
 Revision as of 13:37, 17 August 2010 (view source)Michail (Talk | contribs) (→2D case)← Older edit Revision as of 15:54, 17 August 2010 (view source)Michail (Talk | contribs) (→2D case)Newer edit → Line 8: Line 8:
:$:[itex] - dd + \frac{\partial}{\partial \xi} \left( \rho U \phi \right) + \frac{\partial }{ \partial \eta } \left( \rho V \phi \right) = \frac{\partial}{\partial \xi} \left[ \frac{\Gamma }{J} \left( \alpha \frac{\partial \phi}{\partial \xi} - \beta \frac{\partial \phi}{ \partial \eta} \right) \right] + \frac{\partial}{\partial \eta} \left[ \frac{\Gamma}{J} \left( \gamma \frac{\partial \phi}{\partial \eta} - \beta \frac{\partial \phi}{ \partial \xi} \right) \right] + J S^{\phi}$ [/itex] - (5)
+
(2)

## 2D case

For calculations in complex geometries boundary-fitted non-orthogonal curvlinear grids is usually used.

General transport equation is transformed from the physical domain $(x,y)$ into the computational domain $\left( \xi , \eta \right)$ as the following equation

 $\frac{\partial}{\partial \xi} \left( \rho U \phi \right) + \frac{\partial }{ \partial \eta } \left( \rho V \phi \right) = \frac{\partial}{\partial \xi} \left[ \frac{\Gamma }{J} \left( \alpha \frac{\partial \phi}{\partial \xi} - \beta \frac{\partial \phi}{ \partial \eta} \right) \right] + \frac{\partial}{\partial \eta} \left[ \frac{\Gamma}{J} \left( \gamma \frac{\partial \phi}{\partial \eta} - \beta \frac{\partial \phi}{ \partial \xi} \right) \right] + J S^{\phi}$ (2)