CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Introduction to turbulence/Statistical analysis/Estimation fro...

Introduction to turbulence/Statistical analysis/Estimation from a finite number of realizations

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Estimators for averaged quantities)
(Estimators for averaged quantities)
Line 1: Line 1:
== Estimators for averaged quantities ==
== Estimators for averaged quantities ==
-
Since there can never an infinite number of realizations
+
Since there can never an infinite number of realizations from which ensemble averages (and probability densities) can be computed, it is essential to ask: ''How many realizations are enough?'' The answer to this question must be sought by looking at the statistical properties of estimators based on a finite number of realization. There are two questions which must be answered. The first one is:
 +
 
 +
* Is the expected value (or mean value) of the estimator equal to the true ensemble mean? Or in other words, is yje estimator ''unbiased?''
 +
 
 +
The second question is
 +
 
 +
* Does the difference between the and that of the true mean decrease as the number of realizations increases? Or in other words, does the estimator ''converge'' in a statistical sense (or converge in probability). Figure 2.9 illustrates the problems which can arise.
== Bias and convergence of estimators ==
== Bias and convergence of estimators ==

Revision as of 06:00, 7 June 2006

Estimators for averaged quantities

Since there can never an infinite number of realizations from which ensemble averages (and probability densities) can be computed, it is essential to ask: How many realizations are enough? The answer to this question must be sought by looking at the statistical properties of estimators based on a finite number of realization. There are two questions which must be answered. The first one is:

  • Is the expected value (or mean value) of the estimator equal to the true ensemble mean? Or in other words, is yje estimator unbiased?

The second question is

  • Does the difference between the and that of the true mean decrease as the number of realizations increases? Or in other words, does the estimator converge in a statistical sense (or converge in probability). Figure 2.9 illustrates the problems which can arise.

Bias and convergence of estimators

My wiki